Adobe
FrameMaker 70

MIF Reference Online Manual ' “@’
Adobe

Adobe, the Adobe logo, Acrobat, Acrobat Reader, Adobe Type Manager, ATM, Display PostScript, Distiller, Exchange, Frame,
FrameMaker, InstantView, and PostScript are trademarks of Adobe Systems Incorporated. Apple, PowerBook, QuickTime, Mac,
Macintosh and Power Macintosh are trademarks of Apple Computer, Inc., registered in the United States and other countries. HP-
UX is a registered trademark of Hewlett-Packard Company. Microsoft, MS-DOS, Windows, and Windows NT are either registered
trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.. Sun and Solaris are trademarks
or registered trademarks of Sun Microsystems, Inc. in the United States and other countries. Unix is a registered trademark and X
Window System is a trademark of The Open Group. All other trademarks are property of their respective owners. © 2002 Adobe Systems
Incorporated. All rights reserved.

Contents

Introduction

Using MIF Statements

MIF Document
Statements

Why use MIF? o 1
Using thismanual 1
Style CONVENLIONS ..ot 2
Overview of MIF statementso, 2
MIF statement syntax ... 4
Working with MIF files ... o 9
Creating a simple MIF file for FrameMaker 11
Creating and applying character formats — 21
Creating and formatting tables, 23
Specifying page layout 31
Creating markerso i 36
Creating cross-references i 36
Creating variables 38
Creating conditional text 40
Including template files 43
Setting View Only document options ... 45
Applications of MIF ... 47
Debugging MIFfiles .. o o 50
Other applicationtools 51
Wheretogofromhere 51
MIFfile layout 52
MIFFile statement 53
Control Statementso 54
Macro statements ... 55
Conditional text ... oo 56
Paragraph formats 58
Character formats ... 62
Tables o 68
COlOr 77
Variables .. 80

Cross-references 81

MIF Book File Statements

MIF Statements for

Structured Documents
and Books

MIF Equation Statements

MIF Asian Text
Processing Statements

Global document properties ... 82
PageS 99
Graphic objects and graphic frames ... 101
Textflows oo 119
Text insets (text imported by reference) —.......... 127
Publishers 133
MIF book file overview 135
MIF book file identification line oo 136
Book statements 136
Structural element definitions —........... L. 144
Attribute definitions ... 147
FOrmMat rUIES . 148
Format change lists 154
Elements 161
XML data for structured documents ... i 164
Preference settings for structured documents — 164
Text in structured documents 167
Structured book statements ... 168
MIF MESSAgES .ot 171
Document statement 173
Math statement 177
MathFullForm statement 178
Asian Character Encoding 198
Combined Fonts ... o 199
KumihanTables 202

RUDIteXt 212

Examples

MIF Messages

MIF Compatibility

Facet Formats for
Graphics

EPSI Facet Format

FrameImage Facet
Format

FrameVector Facet
Format

Textexample ... 216
Bar chartexample 217
Pie chartexample 221
Custom dashed lines 222
Table examples ... 224
Database publishing i 227
General form for MIF messages ..o 234
List of MIF MESSagesori e 234
Changes between version 6.0and 7.0 237
Changes between version 5.5and 6.0 238
Changes between version 5and 5.5 239
Changes between versions4and5 240
Changes between versions 3and 4 244
Facets for imported graphics 248
Basic facet format 249
Graphic insets (UNIX versions), 251
General rules for reading and writing facets ... 256
Specification of an EPSI facet L. 258
Example of an EPSIfacet 258
Specification of a Framelmage facet l 260
Specification of Framelmagedataio 260
Differences between monochrome and color 263
Sample unencoded Framelmage facet 264
Sample encoded Framelmage facetl 266
Specification of a FrameVector facet 268
Specification of FrameVector datal 268

Sample FrameVector facet 284

Introduction

MIF (Maker Interchange Format) is a group of ASCII statements that create an easily parsed, readable text file of all
the text, graphics, formatting, and layout constructs that FrameMaker understands. Because MIF is an alternative
representation of a FrameMaker document, it allows FrameMaker and other applications to exchange information
while preserving graphics, document content, and format.

Why use MIF?

You can use MIF files to allow FrameMaker and other applications to exchange information. For example, you can
write programs to convert graphics and text into MIF and then import the MIF file into FrameMaker with the
graphics and text intact. You can also save a FrameMaker document or book file as a MIF file and then write a
program to convert the MIF file to another format. These conversion programs are called filters; filters allow you to
convert FrameMaker document files into foreign files (files in another word processing or desktop publishing
format), and foreign files into FrameMaker document files.

You can use MIF files with database publishing applications, which allow you to capture changing data from
databases and format the data into high-quality documents containing both text and graphics information. You use
the database to enter, manipulate, sort, and select data. You use FrameMaker to format the resulting data. You use
MIF files as the data interchange format between the database and FrameMaker.

You can also use MIF files to do the following:

* Share documents with earlier versions of FrameMaker
* Perform custom document processing

* Set options for online documents in View Only format

These tasks are described in “Applications of MIF” on page 47. You can use other FrameMaker to perform some of
these tasks. See “Other application tools” on page 51.

Using this manual

This manual:

* Describes the layout of MIF files.

* Provides a complete description of each MIF statement and its syntax.
* Provides examples of how to use MIF statements.

« Includes MIF statements for version 7.0 of FrameMaker".

To get the most from this manual you should be familiar with FrameMaker. For information about FrameMaker and
its features, see the documentation for your product. In addition, if you are using MIF as an interchange format
between FrameMaker and another application, you should be familiar with the tools needed to create and manip-
ulate the other application, such as a programming language or database query language.

This chapter provides basic information about working with MIF files, including opening and saving MIF files in
FrameMaker. It goes on to provide detailed information about the MIF language and its syntax.

Online manual

ADOBE FRAMEMAKER 7.0 |2
Introduction

For an introduction to writing MIF files, read , “Using MIF Statements.” You can then use the statement index,
subject index, and table of contents to locate more specific information about a particular MIF statement.

For a description of a MIF statement, use the table of contents or statement index to locate the statement.

For a description of the differences between the MIF statements for this version of FrameMaker and earlier versions,
see , “MIF Compatibility.”

Style conventions

This manual uses different fonts to represent different types of information.

» What you type is shown in

text like this.

» MIF statement names, pathnames, and filenames are also shown in
text like this.

» Placeholders (such as MIF data) are shown in

text like this.

* For example, the statement description for Pgf Tag is shown as:
<PgfTag tagstring>

* You replace t agst ri ng with the tag of a paragraph format.

This manual also uses the term FrameMaker, (as in FrameMaker document, or FrameMaker session) to refer to
FrameMaker and to refer to structured or unstructured documents.

Overview of MIF statements

When you are learning about MIF statements, you may find it useful to understand how FrameMaker represents
documents.

How MIF statements represent documents

FrameMaker represents document components as objects. Different types of objects represent different components
in a FrameMaker document. For example, a paragraph is considered an object; a paragraph format is considered a
formatting object. The graphic objects that you create by using the Tools palette are yet another type of object.

Each object has properties that represent its characteristics. For example, a paragraph has properties that represent
its left indent, the space above it, and its default font. A rectangle has properties that represent its width, height, and
position on the page.

When FrameMaker creates a MIF file, it writes an ASCII statement for each object in the document or book. The
statement includes substatements for the object’s properties.

For example, suppose a document (with no text frame) contains a rectangle that is 2 inches wide and 1 inch high.
The rectangle is located 3 inches from the left side of the page and 1.5 inches from the top. MIF represents this
rectangle with the following statement:

Online manual

ADOBE FRAMEMAKER 7.0
Introduction

<Rectangle# Type of graphic object
Position and size: left offset, top offset,
width, and height
<ShapeRect 3.0" 1.5" 2.0" 1.0">
>

FrameMaker also treats each document as an object and stores document preferences as properties of the document.
For example, a document’s page size and page numbering style are document properties.

FrameMaker documents have default objects

A FrameMaker document always has a certain set of default objects, formats, and preferences, even when you create
a new document. When you create a MIF file, you usually provide the objects and properties that your document
needs. However, if you don’t provide all the objects and properties required in a FrameMaker document, the MIF
interpreter fills in a set of default objects and document formats.

The MIF interpreter normally provides the following default objects:

* Predefined paragraph formats for body text, headers, and table cells
* Predefined character formats

* A right master page for single-sided documents and left and right master pages for double-sided documents
* A reference page

¢ Predefined table formats

* Predefined cross-reference formats

* Default pen and fill values and dash patterns for graphics

* Default colors

* Default document preferences, such as ruler settings

¢ Default condition tags

Although you can rely on the MIF interpreter to provide defaults, the exact properties and objects provided may vary
depending on your FrameMaker configuration. The MIF interpreter uses default objects and properties that are
specified in setup files and in templates. In UNIX® versions, these templates are ASCl | Tenpl at e and NewTenpl at e.
You can modify these default objects and document formats by creating your own version of ASCl | Tenpl at e or
NewTenpl at e or by modifying your setup files.

For more information about modifying the default templates and setup files, see the online manual Customizing
FrameMaker for UNIX versions of FrameMaker. For the Macintosh and Windows® versions, see the chapter on
templates in your user manual.

Current state and inheritance

FrameMaker has a MIF interpreter that reads and parses MIF files. When you open or import a MIF file, the inter-
preter reads the MIF statements and creates a FrameMaker document that contains the objects described in the MIF
file.

When the interpreter reads a MIF file, it keeps track of the current state of certain objects. If the interpreter reads an
object with properties that are not fully specified, it applies the current state to that object. When an object acquires
the current state, it inherits the properties stored in that state.

3

Online manual

ADOBE FRAMEMAKER 7.0 |4
Introduction

For example, if the line width is set to 1 point for a graphic object, the interpreter continues to use a 1-point line
width for graphic objects until a new value is specified in the MIF file. Similarly, if the MIF file specifies a format for
a paragraph, the interpreter uses the same format until a new format is specified in the file.

The MIF interpreter keeps track of the following document objects and properties:
* Units

 Condition tag properties

¢ Paragraph format properties

¢ Character format properties

* Page properties

* Graphic frame properties

¢ Text frame properties

* Fill pattern

* Pen pattern

* Line width

* Line cap

* Line style (dash or solid)

 Color

o Text line alignment and character format

Because the interpreter also provides default objects for a document, the current state of an object may be deter-
mined by a default object. For example, if a document does not provide any paragraph formats, the interpreter
applies a set of default paragraph properties to the first paragraph. Subsequent paragraphs use the same properties
unless otherwise specified.

How FrameMaker identifies MIF files

A MIF file must be identified by a M FFi | e or Book statement at the beginning of the file; otherwise FrameMaker
simply reads the file as a text file. All other statements are optional; that is, a valid MIF file can contain only the

M FFi | e statement. Other document objects can be added as needed; FrameMaker provides a set of default objects
if a MIF file does not supply them.

MIF statement syntax
The statement descriptions in this manual use the following conventions to describe syntax:

<t oken data>

token data wheret oken represents one of the MIF statement names (such as Pgf) listed in the MIF statement
descriptions later in this manual, and dat a represents one or more numbers, a string, a token, or nested statements.
Markup statements are always delimited by angle brackets (<>); macro statements are not. For the syntax of macro
statements, see “Macro statements” on page 55.

A token is an indivisible group of characters that identify a reserved word in a MIF statement. Tokens in MIF are case-
sensitive. A token cannot contain white space characters, such as spaces, tabs, or newlines. For example, the following
MIF statement is invalid because the token contains white space characters: <Un its U n>

Online manual

ADOBE FRAMEMAKER 7.0 |5
Introduction

When the MIF interpreter finds white space characters that aren’t part of the text of the document (as in the example
MIF statement, < Units Uin >),itinterprets the white space as token delimiters. When parsing the example
statement, the MIF interpreter ignores the white space characters between the left angle bracket (<) and the first
character of the token, Uni t s. After reading the token, the MIF interpreter checks its validity. If the token is valid,
the interpreter reads and parses the data portion of the statement. If the token is not valid, the interpreter ignores all
text up to the corresponding right angle bracket (>), including any nested substatements. The interpreter then scans
the file for the next left angle bracket that marks the beginning of the next MIF statement.

All statements, as well as all data portions of a statement, are optional. If you do not provide a data portion, the MIF
interpreter assigns a default value to the statement.

Statement hierarchy

Some MIF statements can contain other statements. The contained statements are called substatements. In this
manual, substatements are usually shown indented within the containing statements as follows:

<Document
<DStartPage 1>
>

The indentation is not required in a MIF file, although it may make the file easier for you to read.

A MIF main statement appears at the fop level of a file. A main statement cannot be nested within other statements.
Some substatements can only appear within certain main statements.

The statement descriptions in this manual indicate the valid locations for a substatement by including it in all of the
valid main statements. Main statements are identified in the statement description; for the correct order of main
statements, see “MIF file layout” on page 52.

MIF data items

There are several general types of data items in a MIF statement. This manual uses the following terms and symbols
to identify data items.

This term or symbol Means

string Left quotation mark (*), zero or more standard ASCII characters,and a straight quotation mark (*).
Example:* ab cdef ghij ' .Toinclude extended ASCII characters in a string, you must use a
backslash sequence (see “Character set in strings”on page 7).

tagstring A string that names a format tag, such as a paragraph format tag.At agst r i ng value must be
unique; case is significant. A statement that refers toat agst r i ng must exactly match thet ag-
stringvalue.At agst ring value can include any character from the FrameMaker character

set.
pat hname A string specifying a pathname (see “Device-independent pathnames” on page 8).
bool ean A value of either Yes or No. Case is significant.
i nteger Integer whose range depends on the associated statement name.
1D Integer that specifies a unique ID.An ID can be any positive integer between 1 and 65535, inclu-

sive. A statement that refers to an ID must exactly match the ID.

di mensi on Decimal number signifying a dimension.You can specify the units,suchas 1. 11",72 pt,and
8. 3 cmlif no units are specified, the default unit is used (see “Units statement” on page 54).

degrees A decimal number signifying an angle value in degrees.You cannot specify units; any number is
interpreted as a degree value.

Online manual

ADOBE FRAMEMAKER 7.0 |6

This term or symbol

Means

per cent age

A decimal number signifying a percentage value.You cannot specify units; any number is inter-
preted as a percentage value.

metric A dimension specified in units that represent points, where one point is 1/72 inch (see “Math val-
ues”on page 7).Only used in Mat hFul | For mstatements.
WH Pair of dimensions representing width and height.You can specify the units.
XY Coordinates of a point.Coordinates originate at the upper-left corner of the page or graphic frame.
You can specify the units.
LTRB Coordinates representing left, top, right, and bottom indents. You can specify the units.
L TWH Coordinates representing the left and top indents plus the dimensions representing the width and
height of an object.You can specify the units.
XY WH Coordinates of a point on the physical screen represented by Xand Y plus dimensions describing
the width and height.Used only by the DW ndowRect and DVi ewRect statements within the
Docunent statement and the BW ndowRect statement within the Book statement.The val-
ues are in pixels; you cannot specify the units.
keywor d A token value.The allowed token values are listed for each statement; you can provide only one
value.
<t oken..> Ellipsis points in a statement indicate required substatements or arguments.The entire expanded
statement occurs at this point.
Unit values

You can specify the unit of measurement for most dimension data items. The following table lists the units of

measurement that FrameMaker supports and their notation in MIFE.

Measurement unit Notation in MIF Relationship to other units
point pt or poi nt 1/72inch

inch “orin 72 points

millimeter mmormi | | i meter 1inchis 25.4 mm
centimeter cmor centineter 1inchis 2.54 cm

pica pc or pica 12 points

didot dd or didot 0.01483 inches

cicero cc or cicero 12 didots

Introduction

Dimension data types can mix different units of measurement. For example, the statement <Cel | Margins L T R

B> can be written as either of the following:

<CellMargins 6 pt 18 pt 6 pt 24 pt>

<CellMargins 6 pt .25" .5 pica 2 pica>

Online manual

ADOBE FRAMEMAKER 7.0 |7
Introduction

Math values

The Mat hFul | For mstatement uses met r i ¢ values in formatting codes. A met ri ¢ unit represents one point (1/72
inch). The netri ¢ type is a 32-bit fixed-point number. The 16 most significant bits of a met ri ¢ value represent the
digits before the decimal; the 16 least significant bits represent the digits after the decimal. Therefore, 1 point is
expressed as hexadecimal 0x10000 or decimal 65536. The following table shows how to convert net ri ¢ values into

equivalent measurement units.

To get this unit Divide the metric value by this number
point 65536

inch 4718592

millimeter 185771

centimeter 1857713

pica 786432

didot 6997

cicero 839724

Character set in strings

MIF string data uses the FrameMaker character set (see the Quick Reference for your FrameMaker product). MIF
strings must begin with a left quotation mark (ASCII character code 0x60) and end with a straight quotation mark
(ASCII character code 0x27). Within a string, you can include any character in the FrameMaker character set.
However, because a MIF file can contain only standard ASCII characters and because of MIF parsing requirements,
you must represent certain characters with backslash (\) sequences.

Character Representation
Tab \t
> \>
' \q
\Q
\ \\
nonstandard ASCII \xnn

All FrameMaker characters with values above the standard ASCII range (greater than \ x7f) are represented in a
string by using \ xnn notation, where nn represents the hexadecimal code for the character. The hexadecimal digits
must be followed by a space.

The following example shows a FrameMaker document line and its representation in a MIF string.

In a FrameMaker document In MIF

Some ‘symbols': > \@;! ‘Some \Qsymbols\q: \> \\\xaf \xcO!'

You can also use the Char statement to include certain predefined special characters in a Par aLi ne statement (see
“Char statement” on page 123).

Online manual

ADOBE FRAMEMAKER 7.0
Introduction

Device-independent pathnames
Several MIF statements require pathnames as values. You should supply a device-independent pathname so that files

can easily be transported across different system types. Because of MIF parsing requirements, you must use the
following syntax to supply a pathname:

" <code\ >name<code\ >name<code\ >nane...’'
where nane is the name of a component in the file’s path and code identifies the role of the component in the path.
The following table lists codes and their meanings.

Code Meaning

r Root of UNIX file tree (UNIX only)

v Volume or drive (Macintosh and Windows)
h Host (Apollo only)

[Component

u Up one level in the file tree

When you specify a device-independent pathname in a MIF string, you must precede any right angle brackets (>)
with backslashes (1), as shown in the syntax above.

Absolute pathnames

An absolute pathname shows the location of a file beginning with the root directory, volume, or drive. The following
table specifies device-independent, absolute pathnames for the different versions of FrameMaker.

In this version The pathname appears as this MIF string

UNIX ‘<r\><c\>MyDirectory<c\>MySubdirectory<c\>Filename'
Macintosh *<v\>MyVolume<c\>MyFolder<c\>MySubfolder<c\>Filename'
Windows ‘<v\>c:<c\>mydir<c\>subdir<c\>filename'

Relative pathnames

A relative pathname shows the location of a file relative to the current directory. In all FrameMaker versions, the
device-independent, relative pathname for the same file is:

*<c\>Filename'

8

Online manual

Using MIF Statements

MIF statements can completely describe any FrameMaker document, no matter how complex. As a result, you often
need many MIF statements to describe a document. To learn how to use MIF statements, it helps to begin with some
simple examples.

This chapter introduces you to MIF, beginning with a simple MIF example file with only a few lines of text.
Additional examples show how to add common document objects, such as paragraph formats, a table, and a custom
page layout, to this simple MIF file.

The examples in this chapter are also provided in online sample files. You can open these examples in FrameMaker
and experiment with them by adding additional MIF statements. Look for the sample files in the following location:

In this version Look here

UNIX $FMHOME/ f mi ni t /| anguage/ Sanpl es/ M F,wherel anguage is the language in use, such as
usengl i sh

Macintosh The M F folder in the Sanpl es folder

Windows The M F directory under the sanpl es directory

Working with MIF files

A MIF file is an alternate representation of a FrameMaker document in ASCII format. MIF files are usually generated
by FrameMaker or by an application that writes out MIF statements. You can, however, create MIF files by using a
text editor or by using FrameMaker as a text editor. This section provides some general information about working
with MIF files regardless of the method you use to create them.

Opening and saving MIF files

When you save a FrameMaker document, you usually save it in Normal format, FrameMaker’s binary format for
document files. To save a document as a MIF file, choose Save As from the File menu. In the Save Document dialog
box, choose Interchange (MIF) from the Format pop-up menu. You should give the saved file the suffix. mi f to
distinguish it from a file saved in binary format.

When you open or import a MIF file, FrameMaker reads the file directly, translating it into a FrameMaker document
or book. When you save the document in Normal format, FrameMaker creates a binary document file. To prevent
overwriting the original MIF file, remove the . ni f file suffix and replace it with a different suffix (or no suffix).

If you use FrameMaker to edit a MIF file, you must prevent it from interpreting MIF statements when you open the
file by holding down a modifier key and clicking Open in the Open dialog box.

In this version Use this modifier key
UNIX Shift

Macintosh Option

Windows Control or Shift

Online manual

ADOBE FRAMEMAKER 7.0 |10
Using MIF Statements

Save the edited MIF file as a text file by using the Save As command and choosing Text Only from the Format pop-
up menu. Give the saved file the suffix . ni f . When you save a document as Text Only, FrameMaker asks you where
to place carriage returns. For a MIF file, choose the Only between Paragraphs option.

In UNIX versions, FrameMaker saves a document in text format in the ISO Latin-1 character encoding. You can
change the character encoding to ASCII by changing the value of an X resource. See the description of character
encoding in the online manual Customizing FrameMaker. In Macintosh and Windows versions, press Esc F t ¢ to
toggle between FrameMaker’s character encoding and ANSI for Windows or ASCII for Macintosh.

Importing MIF files

You can use the File menu’s Import>File command to import MIF files into an existing document, but you must
make sure that the imported statements are valid at the location where you are importing them. A MIF file can
describe both text and graphics; make sure that you have selected either a place in the text flow (if you are importing
text or graphics) or an anchored frame (if you are importing graphics).

For example, to import a MIF file that describes a graphic, first create an anchored frame in a document, select the
frame, and then import the MIF file (see “Bar chart example” on page 217).

When you import or include MIF files, make sure that object IDs are unique in the final document and that refer-
ences to object IDs are correct (see “Generic object statements” on page 101).

Editing MIF files

You normally use a text editor to edit a MIF file. If you use FrameMaker to enter text into a MIF file, be sure to open
the MIF file as a text file and turn off Smart Quotes. If you leave Smart Quotes on, you must use a key sequence to
type the quotation marks that enclose a MIF string ("'). To enter a left quotation mark, type Control-". To enter a
straight quotation mark, type Control-'.

Although MIF statements are usually generated by a program, while you learn MIF or test and debug an application
that generates MIF, you may need to manually generate MIF statements. In either case, you can minimize the number
of MIF statements that your application needs to generate or that you need to type in.

The following suggestions may be helpful when you are working with MIF statements:

+ Edit a MIF file generated by FrameMaker.

* You can edit a MIF file generated by FrameMaker or copy a group of statements from a MIF file into your file and
then edit the statements. An easy way to use FrameMaker to generate a MIF file is to create an empty document
by using the New command and then saving it as a MIF file.

* Test one object at a time.

+ While testing an object in a document or learning about the MIF statements that describe an object, work with
just that object. For example, if you work with a document that contains both tables and anchored frames, start
by creating the MIF statements that describe tables. Then add the statements that describe anchored frames.

* Use the default properties provided by FrameMaker.

+ If you are not concerned with testing certain document components, let FrameMaker provide a set of default
document objects and formats.

Online manual

ADOBE FRAMEMAKER 7.0 |11
Using MIF Statements

MIF file layout
FrameMaker writes the objects in a MIF document file in the following order:
This section Contains these objects
FileID MIF file identification line (M FFi | e statement)
Units Default units (Uni t S statement)
Catalogs Color
Condition

Paragraph Format
Element

Font or Character Format
Ruling

Table Format

Views

Formats Variable

Cross-reference

Objects Document
Dictionary
Anchored frames
Tables
Pages

Text flows

FrameMaker provides all of these objects, even if the object is empty. To avoid unpredictable results in a document,

you must follow this order when you create a MIF file.

Creating a simple MIF file for FrameMaker

The rest of this chapter explains how to create some simple MIF files for FrameMaker by hand. These instructions do not

apply to structured documents, which require that you create elements first.

The most accurate source of information about MIF files is a MIF file generated by FrameMaker. MIF files generated

by FrameMaker can be very lengthy because FrameMaker repeats information and provides default objects and
formats for all documents. You may find it difficult to determine the minimum number of statements that are

necessary to define your document by looking at a FrameMaker-generated MIF file.

To better understand how FrameMaker reads MIF files, study the following example. This MIF file uses only four

statements to describe a document that contains one line of text:

<MIFFile 7.00># The only required statement
<Para # Begin a paragraph
<ParaLine# Begin a line within the paragraph

<String "Hello World'># The actual text of this document

> # end of Paraline #End of ParaLine statement

> # end of Para #End of Para statement

Online manual

ADOBE FRAMEMAKER 7.0 |12
Using MIF Statements

The M FFi | e statement is required in each MIF file. It identifies the FrameMaker version and must appear on the
first line of the file. All other statements are optional; that is, FrameMaker provides a set of default objects if you
specify none.

Comments in a MIF file are preceded by a number sign (#). By convention, the substatements in a MIF statement
are indented to show their nesting level and to make the file easier to read. The MIF interpreter ignores spaces at the
beginning of a line.

This example is in the sample file hel | 0. ni f . To see how FrameMaker provides defaults for a document, open this
file in FrameMaker. Even though the MIF file does not specify any formatting, FrameMaker provides a default
Paragraph Catalog and Character Catalog. In addition, it provides a right master page, as well as many other default
properties.

Save this document as a MIF file and open the FrameMaker-generated MIF file in a text editor or in FrameMaker as
a text file. (For information on how to save and open MIF files, see “Opening and saving MIF files” on page 9.)

You'll see that the MIF interpreter has taken the original 6-line file and generated over 1,000 lines of MIF statements
that describe all the default objects and their properties. To see the actual text of the document, go to the end of the
file.

This example demonstrates an important point about MIF files. Your MIF file can be very sparse; the MIF interpreter
supplies missing information. Most documents are not this simple, however, and require some formatting. The
following sections describe how to add additional document components, such as paragraph and character formats,
a table, and custom page layouts, to this minimal MIF file.

Creating and applying paragraph formats

In a FrameMaker document, paragraphs have formatting properties that specify the appearance of the paragraph’s
text. A paragraph format includes the font family and size, indents, tab stops, the space between lines in a paragraph,
and the space before and after a paragraph. In a FrameMaker document, the end of a paragraph is denoted by a single
carriage return. You control the amount of space above and below the paragraph by modifying the paragraph’s
format, not by adding extra carriage returns.

In a FrameMaker document, you store paragraph formats in a Paragraph Catalog and assign a tag (name) to the
format. You can then apply the same format to many paragraphs by assigning the format tag to the paragraphs. You
can also format a paragraph individually, without storing the format in the Paragraph Catalog. Or, you can assign a
format from the Paragraph Catalog and then override some of the properties within a particular paragraph. Formats
that are not stored in the Paragraph Catalog are called local formats.

Creating a paragraph
In a MIF file, paragraphs are defined by a Par a statement. A Par a statement contains one or more Par alLi ne state-
ments that contain the lines in a paragraph; the actual text of the line is enclosed in one or more St r i ng statements:

<Para # Begin a paragraph

<ParaLine# Begin a line within the paragraph

<String ‘Hello World'># The actual text of this document

> # End of ParaLine statement
> # End of Para statement
The Par a, Par aLi ne, and St ri ng statements are the only required statements to import text. You could use this
example to import a simple document into FrameMaker by placing each paragraph in a Par a statement. Break the
paragraph text into a series of St ri ng statements contained in one Par aLi ne statement. It doesn’t matter how you
break up text lines within a Par a statement; the MIF interpreter automatically wraps lines when it reads the MIF file.

Online manual

ADOBE FRAMEMAKER 7.0 |13
Using MIF Statements

Some characters must be represented by backslash sequences in a MIF string. For more information, see “Character
set in strings” on page 7.

Creating a paragraph format

Within a FrameMaker document, you define a paragraph format by using the Paragraph Designer to specify the
paragraph’s properties. In a MIF file, you define a paragraph format by using the Pgf statement.

The Pgf statement contains a group of substatements that describe all of a paragraph’s properties. It has the
following syntax:

<Pgf
<property val ue>
<property val ue>

>

A Pgf statement is quite long, so learning how to relate its substatements to the paragraph’s properties may take some
practice. Usually a MIF statement name is similar to the name of the setting within a dialog box. The following
examples show the property dialog boxes from the Paragraph Designer with the related Pgf substatements.

Suppose you have created a paragraph format for a numbered list item with Basic properties defined as follows in
the Paragraph Designer.

= FParagraph Designer
graph Tag: Indents: Space: [Tah Stops:
tumbered -] | Abave ¥ ——
Properties: . : El

|0.0" 0.0 pt 0.25" L

Basic -

Left: Below 1
I Aty | || o5 loopt |-

| I |

To Selection Right:
Update All | o.0° Line Spacing: Edit... |
Formats Tagged: i . |1 4.0 pt .
Humbered Alignment: El I Hext q Tag:

Left o | 1 Fixed |7E|

1 Commands: El —

The following table shows the corresponding MIF statements:

In MIF file In Paragraph Designer
<PgfTag ‘Numbered'> Paragraph Tag
<PgfFIndent 0.0"> First Indent
<PgfLIndent 0.25"> Left Indent
<PgfRIndent 0.0"> Right Indent
<PgfAlignment Left > Alignment

Online manual

ADOBE FRAMEMAKER 7.0 |14
Using MIF Statements

In MIF file

In Paragraph Designer

<PgfSpBefore 0.0 pt>

Space Above 1

<PgfSpAfter 0.0 pt>

Space Below 1

<PgfLeading 2.0 pt>

Line Spacing (leading is added to font size)

<PgfLineSpacing Fixed>

Line Spacing (fixed)

<PgfNumTabs 1>

Number of tab stops

<TabStop Begin definition of tab
<TSX 0.25"> Tab position
<TSType Left > Tab type

<TSLeaderStr *'>

Tab leader (none)

> # end of TabStop

<PgfUseNextTag No >

Turn off Next 1 Tag feature

<PgfNextTag *'>

Next 9 Tag name (none)

The Default Font properties are defined as follows in the Paragraph Designer.

|

Paragraph Designer

Update All |

Formats Tagged:
Humbered

- Commands: El

Paragraph Tay: Start: Koon VATH:
INumhered El |ﬁnywhere - I I Nextq _I Previous |
Properties:
Pagination = | Format: Widow/Orphan Lines: |1—
I Apply | < In Column

To Selection % Run-In Head - - Default Punctuation: Ii

% 3Side Head- - Alignment: First Baseline = |

+ Across All Columns
+ Across All Columns and Side Heads
W As s

The following table shows the corresponding MIF statements:

In MIF file In Paragraph Designer
<PgfFont

<FFamily "Times'> Family

<FSize 12.0 pt> Size

<FEncoding>

Online manual

ADOBE FRAMEMAKER 7.0 |15
Using MIF Statements

In MIF file In Paragraph Designer
<FAngle ‘Regular'> Angle

<FWeight ‘Regular'> Weight
<FLanguage> Language

<FVar ‘Regular'> Variation

<FColor ‘Black'> Color

<FDW 0.0 pt> Spread

<FStretch 100%> Stretch
<FUnderlining NoUnderlining > Underline
<FOverline No > Overline

<FStrike No > Strikethrough
<FChangeBar No > Change Bar
<FPosition FNormal > Superscript/Subscript
<FCase FAsTyped > Capitalization
<FPairKern Yes > Pair Kern

<FTsume No> Tsume (Asian systems only)
> # end of PgfFont

The Pagination properties are defined as follows in the Paragraph Designer.

= Paragraph Designer
Faragraph Tag: Start: Keep With:
INumhered El |.H.nywher'e = I | Nextq I Previous
Properties:
Pagination - | Format: YWidow/Orphan Lines: |1
“* In Column
I ppply |
Run-In Head- - Default Punctuation: I
To Selection v

- % Side Head--Alignment: First Baseline - |
Update Al + Across All Columns

Formats Tagged: | | . arenss All Columns and Side Heads
Humbered
+ As s

— Commands: El -

Online manual

ADOBE FRAMEMAKER 7.0 |16
Using MIF Statements

The following table shows the corresponding MIF statements:

In MIF file In Paragraph Designer

<PgfPlacement Anywhere > Start

<PgfWithNext No > Keep With Next 1

<PgfWithPrev No > Keep With Previous 1

<PgfBlockSize 1> Widow/Orphan Lines

<PgfPlacementStyle Normal > Format (paragraph placement)

<PgfRunInDefaultPunct *. '> Run-in Head Default Punctuation (a period followed by an em space)

The Numbering properties are defined as follows in the Paragraph Designer.

=| Paragraph Designer
Paragraph Tag:
W El [~ Autonumber Format:
Properties: I‘"”"“’

|Numhering =] I Building Blocks: Character Fonmat:

—— T % [Default § Font
Wt
I Apply w Default] Font Ay
To Selection e Emphasiz
— a=T> EquationVariables
Update All I <
. LA i
Formats Tagged: als
Numbered <Ar Position:
T Le .85 Start of Paragraph =
= Commands: El Z P =
| |
The following table shows the corresponding MIF statements:
In MIF file In Paragraph Designer
<PgfAutoNum Yes > Turn on Autonumber
<PgfNumFormat ‘<n+\>.\\t' > Autonumber Format (a number followed by a period and a tab)
<PgfNumberFont "' > Character Format (Default 9 Format)
<PgfNumAtEnd No > Position (Start of Paragraph)

Online manual

The Advanced properties are defined as follows in the Paragraph Designer.

|

Paragraph Designer

Advanced -

I Apply |

To Selection

Update All |

Formats Tagged:
Body

+ Commands: El

Paragraph Tag: Automatic Hyphenation:
IBDHY El Max. # Adjacent: Iz Shortest Prefix:
Properties:

Shortest Word: Is
[~ Hyphenate

Shortest Suffix:

B
B

Word Spacing (% of Standard Space):

Maximumn: [110.0%

| Allowy Automatic Letter Spacing

Minimum: |3|].u% Optimum: |Il]l].l]%

Standard Space = 0.25 em

Frame shove §: HMHone — | Below : Mone -

The following table shows the corresponding MIF statements:

ADOBE FRAMEMAKER 7.0 |17
Using MIF Statements

In MIF file

In Paragraph Designer

<PgfHyphenate Yes >

Automatic Hyphenation (on)

<HyphenMaxLines 2>

Max. # Adjacent

<HyphenMinWord 5> Shortest Word
<HyphenMinPrefix 3> Shortest Prefix
<HyphenMinSuffix 3> Shortest Suffix

<PgfMinWordSpace 90>

Minimum Word Spacing

<PgfOptWordSpace 100>

Optimum Word Spacing

<PgfMaxWordSpace 110>

Maximum Word Spacing

<PgfLetterSpace Yes >

Allow Automatic Letter Spacing

<PgfTopSeparator *'>

Frame Above 1

<PgfBotSeparator *'>

Frame Below

Online manual

The Table Cell properties are defined as follows in the Paragraph Designer.

|

Paragraph Designer

Paragraph Tag:

INumheredA El

Properties:

Apply |

To Selection

Update All |

Formats Tagged:
Humbered

- Commands: El

Cell Vertical Alighment: Top

Cell Margins:

Top: From Table Format, Plus:

- | Il].l] pt

Bottom: From Table Fornmat, Plus:

=] | Il].l] pt

Left: From Table Format, Plus:

- | Il].l] pt

Right:

From Table Format, Plus:

=] | Il].l] pt

The following table shows the corresponding MIF statements:

ADOBE FRAMEMAKER 7.0 |18
Using MIF Statements

In MIF file

In Paragraph Designer

<PgfCellAlignment Top >

Cell Vertical Alignment

<PgfCellMargins 0.0 pt 0.0 pt 0.0 pt 0.0 pt> Cell Margins
<PgfCellTMarginFixed No > Top
<PgfCellBMarginFixed No > Bottom
<PgfCellLMarginFixed No > Left
<PgfCellRMarginFixed No > Right

Adding a Paragraph Catalog

In a MIF file, you define a Paragraph Catalog by using a Pgf Cat al og statement. The Paragraph Catalog contains one
or more paragraph formats, which are defined by Pgf statements. A Pgf Cat al og statement looks like this:

<PgfCatalog

<Pgf...># A paragraph format description

<Pgf...># More paragraph formats

> # end of PgfCatalog

The Pgf statement describes a complete paragraph format. For example, the sample file pgf cat . i f stores the

paragraph format 1Heading in the

<MIFFile 7.00># Hand generated
<PgfCatalog
<Pgf
<PgfTag “1Heading'>
<PgfUseNextTag Yes >
<PgfNextTag “Body'>

Paragraph Catalog:

Online manual

ADOBE FRAMEMAKER 7.0 |19
Using MIF Statements

<PgfAlignment Left >
<PgfFIndent 0.0">
<PgfLIndent 0.0">
<PgfRIndent 0.0">

> # end of Pgf
> # end of PgfCatalog
If you open pgf cat . nmi f in FrameMaker, you'll see that the Paragraph Catalog contains a single paragraph format
called 1Heading. If you supply a Paragraph Catalog, the paragraph formats in your catalog replace those in the
default catalog; they do not supplement the default formats.

If you do not supply a Paragraph Catalog in a MIF file, the MIF interpreter provides a default Paragraph Catalog with
predefined paragraph formats.

If a Pgf statement provides only the name of a paragraph format, the MIF interpreter supplies default values for the
rest of the paragraph properties when it reads in the MIF file.

Applying a paragraph format
To apply a format from the Paragraph Catalog to a paragraph, use the Pgf Tag statement to include the format tag

name within the Par a statement. For example, to apply the previously defined format 1Heading to a paragraph, use
the following statements:

<Para

<PgfTag ‘1Heading'>

<ParaLine

<String ‘This line has the format called 1Heading.'>

> # end of ParaLine
> # end of Para
To apply a format from the Paragraph Catalog and then locally override some properties, use a partial Pgf statement
within the Par a statement. The following MIF example applies the paragraph format 1Heading, then changes the
alignment:

<Para
<PgfTag ‘1Heading'>
<Pgf
<PgfAlignment Center>
> # end of Pgf
<ParaLine
<String ‘This line is centered.'>
> # end of ParaLine
> # end of Para

To locally define a paragraph format, include a complete Pgf statement within the Par a statement:

<Para
<Pgf

<PgfTag ‘2Heading'>
<PgfUseNextTag Yes >
<PgfNextTag ‘Body'>
<PgfAlignment Left >
<PgfFIndent 0.0">
<PgfLIndent 0.0">

Online manual

ADOBE FRAMEMAKER 7.0 |20
Using MIF Statements

> # end of Pgf
<ParaLine
<String "A locally formatted heading'>
> # end of ParaLine
> # end of Para

For a complete description of Pgf property statements, see page 58.

How paragraphs inherit properties

Paragraphs can inherit properties from other paragraphs in a MIF file. If a Pgf statement does not provide values for
each paragraph property, it acquires any property values explicitly defined in a previous Pgf statement. Because the
MIF interpreter sequentially reads MIF files, it uses the most recently defined Pgf statement that occurs before the
current statement in the file.

For example, the following MIF code applies the default format named Body to the first paragraph in a document
and locally overrides the paragraph font:

<Para
<Pgf
<PgfTag ‘Body'>
<PgfFont
<FWeight "Bold'>
> # end of PgfFont
> # end of Pgf
<ParaLine
<String "First paragraph in document.'>
> # end of ParaLine
> # end of Para
<Para
<ParaLine
<String ‘Second paragraph in document.'>
> # end of ParaLine
> # end of Para
The previous example is in the sample file pgf f nt . ni f . If you open this file in FrameMaker, you'll find that the
second paragraph also has the new font property.

A paragraph property remains in effect until the property value is changed by a subsequent MIF statement. To
change a paragraph property to another state, supply a Pgf statement containing the paragraph property statement
set to the new state.

Thus, in the previous example, you could change the font from Bold to Regular in a Pgf statement in the second
Par a statement:

<Para
<Pgf
<PgfFont
<FWeight ‘Regular'>
> # end of PgfFont
> # end of Pgf
<ParaLine

<String "Second paragraph in document.'>

Online manual

ADOBE FRAMEMAKER 7.0 | 21
Using MIF Statements

> # end of ParaLine
> # end of Para

To summarize, paragraphs inherit formats as follows:
 Formats in the Paragraph Catalog inherit properties from the formats above them.
¢ Locally defined paragraph formats inherit properties from previously specified formats.

¢ Text lines in anchored frames inherit font properties from previously specified formats, including the last format
in the Paragraph Catalog and previous text lines.

Tips
The following hints may help you minimize the MIF statements for paragraph formats:

* If possible, use the formats in the default Paragraph Catalog (don’t supply a Pgf Cat al og statement). If you know
the names of the default paragraph formats, you can tag paragraphs with the Pgf Tag statement.

* Ifyou know thata document will use a particular template when it is imported into a FrameMaker document, you
can just tag the paragraphs in the text flow. Don’t create a new Paragraph Catalog in MIF; it’s easier to create
catalogs in FrameMaker document templates.

+ If you need to provide a full Paragraph Catalog in a MIF file, you can still use FrameMaker to ease the task of
creating a catalog. Create a template in FrameMaker, save the template as a MIF file, and include the Paragraph
Catalog in your document. For instructions, see “Including template files” on page 43.

Creating and applying character formats

You can define character formats locally or store them in the Character Catalog and apply the formats to text selec-
tions. Creating and applying character formats is very similar to creating and applying paragraph formats as
described in the previous section. Because the two methods are similar, this section just summarizes how to create
and apply character formats.

In a MIF file, the Character Catalog is contained in a Font Cat al og statement. The Font Cat al og statement contains
named character formats in a list of Font statements. A Font Cat al og statement looks like this:

<FontCatalog

<Font...># Describes a character format

<Font...># Describes a character format
> # end of FontCatalog
A Font statement specifies the properties of a character format; these are the same properties specified in the
Character Designer. The Font statement is just like the Pgf Font statement that you use to define the default font in
a paragraph format. See “PgfFont and Font statements” on page 63 for a complete description of a Font statement.

To apply a predefined character format to text, use the FTag statement:

<MIFFile 7.00># Hand generated
<FontCatalog
<Font
<FTag ‘Emphasis'>
<FAngle “Italic'>
> # end of Font
> # end of FontCatalog
<Para

Online manual

ADOBE FRAMEMAKER 7.0 |22
Using MIF Statements

<PgfTag ‘Body'>
<ParaLine
<String "You can format characters within a paragraph by '>
<Font
<FTag ‘Emphasis'>
> # end of Font
<String “applying'>
<Font
<FTag *'>
> # end of Font
<String ' a character format from the character catalog.'>
> # end of ParaLine
> # end of Para

Remember to include a second Font statement to end the scope of the applied character format.
To locally define a character format, use a complete Font statement:

<Para
<PgfTag ‘Body'>
<ParaLine
<String “You can also format characters by '>
<Font
<FTag ‘Emphasis'>
.character property statements...
> # end of Font
<String “applying'>
<Font
<FTag *'>
> # end of Font
<String " a locally defined character format.'>
> # end of ParaLine
> # end of Para
Like paragraph formats, character formats inherit properties from previously defined character formats. Unlike
paragraph formats, however, a character format ends at the close of a Par a statement.

See the sample file char f nt . ni f for examples of using character formats.

Online manual

ADOBE FRAMEMAKER 7.0 |23
Using MIF Statements

Creating and formatting tables

You can create tables in FrameMaker documents, edit them, and apply table formats to them. Tables can have
heading rows, body rows, and footing rows. Each row consists of table cells that contain the actual contents of the
table.

Table 1: Coffee Inventory Title
Coffee Bags Status Price per bag -| Heading row
Brazil Santos 50 Prompt $455.00
Celebes Kalossi 29 In Stock $924.00 | Body rows
Colombian 25 In Stock $474.35
$1,853.35 —— Footing row

Tables are like paragraphs in that they have a format. A table format controls the appearance of a table, including the
number and width of columns, the types of ruling or shading in rows and columns, and the table’s position in a text
column. Table formats can be named, stored in a Table Catalog, and applied to many tables. A table format can also
be defined locally.

In a FrameMaker document, tables appear where they have been placed in the text flow. A table behaves like an
anchored frame, so a table flows with the surrounding text unless you give it a specific location. In a MIF file, the
document’s tables are collected in one place and a placeholder for each table indicates the table’s position in the text
flow.

You create a table in a MIF file as follows:

* Specify the contents of the table by using a Thl statement. An individual table is called a table instance. All table
instances are stored in one Thl s statement. Assign each table instance a unique ID number.

+ Indicate the position of the table in the text flow by using an ATbl statement. The ATbl statement is the place-
holder, or anchor, for the table instance. It refers to the table instance’s unique ID.

* Specify the table format by using a Thl For mat statement. Formats can be named and stored in the Table Catalog,
which is defined by a Thl Cat al og statement, or locally defined within a table.

Creating a table instance

All table instances in a document are contained in a Tbl s statement. The Thl s statement contains a list of Thl state-
ments, one for each table instance. A document can have only one Thl s statement, which must occur before any of
the table anchors in the text flow.

The Tbl statement contains the actual contents of the table cells in a list of MIF substatements. Like other MIF state-
ments, this list can be quite long. The following is a template for a Thl statement:

<Tbl
<TblID...># A unique ID for the table
<TblFormat...># The table format
<TbINumColumns...># Number of columns in this table--required
<TblColumnWidth...># Column width, one for each column
<TblH# The heading; omit if no heading

Online manual

ADOBE FRAMEMAKER 7.0 |24
Using MIF Statements

<Row# One Row statement for each row
<Cell...># One statement for each cell in the row
> # end of Row
<TblBody# The body of the table
<Row...># One for each row in body
> # end of TblBody
<TblF# The footer; omit if no footer
<Row...># One for each row in footer
> # end of TbIF
> # end of Tbl
The Tbl | Dstatement assigns a unique ID to the table instance. The Tbl For mat statement provides the table format.
You can use the Thl For mat statement to apply a table format from the Table Catalog, apply a format from the catalog
and override some of its properties, or completely specify the table format locally. Because the tables in a document
often share similar characteristics, you usually store table formats in the Table Catalog. Table instances can always
override the applied format.

The Thl NunCol unms statement specifies the number of columns in the table instance. It is required in every table.

The Tbl H, Thl Body, and Tbl F statements contain the table heading, body, and footer rows. If a table does not have
a heading or footing, omit the statements.

Here’s an example of a simple table that uses a default format from the Table Catalog. The table has one heading row,
one body row, and no footing rows:

Coffee Price per Bag

Brazil Santos $455.00

You can use the following MIF statements to create this simple table:

<MIFFile 7.00>
<Tbls
<Tbl
<TblID 1># ID for this table
<TblTag "Format A'># Applies format from Table Catalog
<TbINumColumns 2># Number of columns in this table
<TblColumnWidth 2.0"># Width of first column
<TblColumnWidth 1.5"># Width of second column
<TblH# Begin table heading
<Row# Begin row
<Cell# First cell in row
<CellContent
<Para# Cells can contain paragraphs
<PgfTag ‘CellHeading'># Applies format from Paragraph Catalog
<ParaLine
<String ‘Coffee'># Text in this cell
>
> # end of Para
> # end of CellContent
> # end of Cell

<Cell # Second cell in row

Online manual

ADOBE FRAMEMAKER 7.0 | 25

Using MIF Statements

<CellContent
<Para
<PgfTag ‘CellHeading'>
<ParaLine
<String "Price per Bag'>
>
> # end of Para
># end of CellContent
># end of Cell
> # end of Row
> # end of TblH
<TblBody# Table body
<Row# Begin row
<Cell# First cell in row
<CellContent
<Para
<PgfTag “CellBody'>
<ParaLine
<String “Brazil Santos'>
>
># end of Para
># end of CellContent
> # end of Cell
<Cell# Second cell in row
<CellContent

<Para

<PgfTag “CellBody'>
<ParaLine

<String "$455.00'>
>

># end of Para
># end of CellContent
> # end of Cell
> # end of Row
> # end of TblBody
> # end of Thbl
> # end of Tbls
A table cell is a text column that contains an untagged text flow not connected to any other flows. You can put any
kind of text or graphics in a table cell. The cell automatically grows vertically to accommodate the inserted text or
graphic; however, the width of the column remains fixed.

Adding a table anchor

To indicate the position of a table in the text flow, you must add an AThl statement. The ATbl statement refers to the
unique ID specified by the Tbl | D statement in the table instance. For example, to insert the table defined in the
previous example, you would add the following statements to the minimal MIF file:

<Para
<ParaLline

<String "Coffee prices for January'>

Online manual

ADOBE FRAMEMAKER 7.0 |26
Using MIF Statements

<ATbl 1># Matches table ID in Tbl statement
> # end of ParaLine
> # end of Para
This example is in the sample file t abl e. ni f . If you open this file in FrameMaker, you’ll see that the anchor symbol
for the table appears at the end of the sentence. To place the table anchor between two words in the sentence, use the

following statements:

<Para
<ParaLline
<String “Coffee prices '>
<ATDI 1>
<String ‘for January'>
> # end of ParaLine
> # end of Para
Note that the ATbl statement appears outside the St ri ng statement. A Par aLi ne statement usually consists of
St ri ng statements that contain text interspersed with statements for table anchors, frame anchors, markers, and

cross-references.

About ID numbers

The table ID used by the ATbl statement must exactly match the ID given by the Thl | Dstatement. If it does not, the
MIF interpreter ignores the ATbl statement and the table instance does not appear in the document. You cannot use
multiple ATbl statements that refer to the same table ID.

An ID can be any positive integer from 1 to 65535, inclusive. The only other statements that require an ID are AFr ane
statements, linked Text Rect statements, and Gr oup statements. For more information about these statements, see

“Graphic objects and graphic frames” on page 101.

Rotated cells

A table can have rotated cells and straddle cells. The following table includes rotated cells in the heading row:

Coffee
Price

Brazil Santos $455.00

In a MIF file, a cell that is rotated simply includes a Cel | Angl e statement that specifies the angle of rotation:

<Cell
<CellAngle 270>
<CellContent...>
> # end of Cell
Cells can only be rotated by 90, 180, or 270 degrees. Cells are rotated clockwise.

Online manual

ADOBE FRAMEMAKER 7.0 |27
Using MIF Statements

Straddle cells

The contents of a straddle cell cross cell borders as if there were a single cell. You can straddle cells horizontally or
vertically. The following table includes a heading row that straddles two columns:

Brazilian Coffee

Coffee Price per Bag

Brazil Santos $455.00

The MIF code for the straddle cell includes a Cel | Col unms statement that specifies the number of columns that the
cell crosses. The contents of the straddle cell appear in the first of the straddle columns; the subsequent Cel | state-
ments for the row must appear even if they are empty.

<Row
<Cell
<CellColumns 2># Number of straddle columns.
<CellContent# Content is in the first cell.
<Para
<PgfTag "CellHeading'>
<ParaLine
<String "Brazilian Coffee'>
>
> # end of Para
> # end of CellContent
> # end of Cell
<Cell # Second cell appears, even though
<CellContent# it is empty.
<Para
<PgfTag ‘CellHeading'>
<ParaLine>
> # end of Para
> # end of CellContent
> # end of Cell
> # end of Row

If the cell straddles rows, the substatement is Cel | Rows.

Creating a table format
A table format includes the following properties:
* The properties specified by the Table Designer

¢ These include the row and column ruling and shading styles, the position of text within cell margins, the table’s
placement within the text column, and the table title position.

* The number and widths of columns
* The paragraph format of the first paragraph in the title (if there is one)

* The paragraph format of the topmost paragraph in the heading, body, and footing cell of each column

Online manual

ADOBE FRAMEMAKER 7.0 |28
Using MIF Statements

For example, you could change the format of the previous table to include shaded rows and a different ruling style:

Coffee Price per Bag
Brazil Santos $455.00
Celebes Kalossi $924.00
Colombian $474.35

The following MIF statements define this table format:

<TblFormat
<TblTag "Coffee Table'>

Every table must have at least one TblColumn # statement.

<TblColumn
<TblColumnNum 0># Columns are numbered from 0.
<TblColumnWidth 2.0"># Width of first column.
> # end of TblColumn
<TblColumn
<TblColumnNum 1># Second column.
<TblColumnWidth 1.5"># Width of second column.
> # end of TblColumn
<TblCellMargins 6.0 pt 6.0 pt 6.0 pt 4.0 pt>
<TblLIndent 0.0"># These are exactly like paragraph
<TblRIndent 0.0"># format properties.
<TblAlignment Center >
<TblPlacement Anywhere >
<TblSpBefore 12.0 pt>
<TblSpAfter 12.0 pt>
<TblBlockSize 1>
<TbIHFFill 15># No fill for heading row.
<TbIHFColor "Black'>
<TblBodyFill 5># Use 10% gray fill for main body rows.
<TblBodyColor *Black'>
<TblShadeByColumn No ># Shade by row, not by column.
<TblShadePeriod 1># Shade every other row.
<TbIXFill 15># No fill for alternate rows.
<TblXColor ‘Black'># Color for alternate rows.
<TblAltShadePeriod 1>
<TblLRuling "Thin'># Use thin left outside rule.
<TblBRuling ‘Thin'># Use thin bottom outside rule.
<TblRRuling ‘Thin'># Use thin right outside rule.
<TbITRuling "Medium'># Use medium top outside rule.

<TblColumnRuling "Thin'># Use thin rules between columns.

<TblXColumnRuling “Thin'>

<TblBodyRowRuling ‘Thin'># Use thin rules between rows.
<TblXRowRuling "Thin'>

<TblHFRowRuling *'># No rules between heading rows.

<TblSeparatorRuling ‘Medium'># Use medium rule after heading row.

Online manual

ADOBE FRAMEMAKER 7.0 |29
Using MIF Statements

<TblXColumnNum 1>

<TblRulingPeriod 4>

<TblLastBRuling No >

<TblTitlePlacement InHeader># Place title above table.

<TblTitlePgf1# Paragraph format for first

<PgfTag ‘TableTitle'># paragraph in title.

> # end of TblTitlePgfl

<TblTitleGap 6.0 pt># Gap between title and table.

<TblInitNumColumns 2># Initial number of rows and

<TblInitNumHRows 1># columns for new tables with

<TblInitNumBodyRows 4># this format.

<TblInitNumFRows 0>

<TbINumByColumn No >
> # end of TblFormat
The Tbl Col unn statement numbers each column and sets its width. A table can have more columns than Tbl Col urm
statements; if a column does not have a specified format, the MIF interpreter uses the format of the most recently
defined column.

A table instance must have at least one Tbl Col unm statement. A table can use a format from the Table Catalog that
includes a Tbl Col urm statement or it can include a local Tbl For mat statement that supplies the Tbl Col unm statement.

Adding a Table Catalog

You can store table formats in a Table Catalog by using a Thl Cat al og statement. A document can have only one
Thbl Cat al og statement, which must occur before the Thl s statement.

The Tbl Cat al og statement contains one Thl For mat statement for each format, as shown in the following template:

<TblCatalog

<TblFormat...>
<TblFormat...>
> # end of TblCatalog
As with the Paragraph Catalog, if your MIF file does not provide a Table Catalog, the MIF interpreter supplies a
default catalog and formats. If you do provide a Table Catalog, your defined table formats supercede those in the
default Table Catalog.

You can add a minimal table format to the catalog by simply supplying a table format tag name. The MIF interpreter
supplies a set of default values to the table’s properties when it reads in the MIF file.

The ruling styles in a table format are defined in a separate catalog called the Ruling Catalog. You can define your
own Ruling Catalog with the Rul i ngCat al og statement. Whether you use the default ruling styles or create your
own, substatements that refer to ruling styles, such as the Tbl LRul i ng statement, must use the name of a ruling
style from the Ruling Catalog. See “RulingCatalog statement” on page 77.

Applying a table format

You can apply a table format from the Table Catalog or you can define a table format locally.

To apply a table format from the Table Catalog, use the Thl Tag statement within the Tbl statement:

Online manual

<Tbls
<Tbl
<TblID 1>
<TblTag "Format A'># Tag of format in Table Catalog
<TbINumColumns 1>
<TblBody

> # end of TblBody
> # end of Tbl
> # end of Tbls

To locally define a table format, use a complete Tbl For mat statement:

<Tbls
<Tbl
<TblID 1>
<TblFormat
<TblTag " ">
Every table must have one TblColumn statement.
<TblColumn
<TblColumnNum 0>
<TblColumnWidth 1.0">
> # end of TblColumn
.table property statenents...

> # end of TblFormat
> # end of Tbl
> # end of Tbls

Creating default paragraph formats for new tables

ADOBE FRAMEMAKER 7.0 |30
Using MIF Statements

You can use the Tbl For mat and Tbl Col unm statements to define default paragraph formats for the columns in new
tables. These default formats do not affect tables that are defined within the MIF file; they only affect tables that the
user inserts after the MIF file has been opened in FrameMaker. Your filter or application should provide these

defaults only for documents that might be edited later.

For example, the following MIF code assigns a paragraph format named Description to body cells in new tables that

are given the format called Coffee Table:

<TblFormat
<TblTag "Coffee Table'>
<TblColumn
<TblColumnNum 0>
<TblColumnWidth 1.0">
<TblColumnBody
<PgfTag ‘Description'>
> # end of TblColumnBody
> # end of TblColumn
> # end of TblFormat

Online manual

ADOBE FRAMEMAKER 7.0
Using MIF Statements

Tables inherit properties differently

Tables inherit formatting properties somewhat differently than other document components. A table without an
applied table format does not inherit one from a previously defined table. Instead, it gets a set of default properties
from the MIF interpreter. Thus, if you apply a named format to a table, a following table will not inherit that format.

Paragraphs in table cells still inherit properties from previously defined paragraph formats. If you give a table cell a
certain paragraph style, all subsequent cells inherit the same property unless it is explicitly reset. Table cells can
inherit paragraph properties from any previously specified paragraph format, including other tables, paragraphs, or
even the Paragraph Format catalog.

Tips
To avoid problems when creating tables:
* Give each table a unique ID number.

* Make sure that each Tbl statement has only one corresponding ATbl statement, and that each ATbl statement has
a corresponding Tbl statement.

* Make sure that each ATbl statement matches the ID of its corresponding table instance.

Specifying page layout

FrameMaker documents have two kinds of pages that determine the position and appearance of text in the
document: body pages and master pages.

Body pages contain the text and graphics that form the content of the document. Master pages control the layout of
body pages. Each body page is associated with one master page, which specifies the number, size, and placement of
the page’s text frames and the page background, such as headers, footers, and graphics.

Untagged
background text
frame

—

| On body pages, you type in a
Tagged — column of a tagged text
template text _—— frame.

frame —

ntagged [

background text
frame

Master page Body page

Text frames define the layout of the document’s text on a page. A text frame can arrange text in one or more columns.
In MIF, a text frame is represented by a Text Rect statement. The dimensions of the text frame and the number of
columns in the text frame are specified by substatements under the Text Rect statement.

A text flow describes the text contained in one or more text frames. In MIF, a text flow is represented by a Text Fl ow
statement. The actual text of the document is specified by substatements under the Text Fl ow statement.

If the text flow has the autoconnect property (if the text flow uses the MIF statement <TFAut oConnect Yes>), the
text flow runs through a series of text frames; when you fill up one text frame, text continues into the next text frame.
Most documents have only one text flow, although you can create many separate flows.

31

Online manual

ADOBE FRAMEMAKER 7.0
Using MIF Statements

FrameMaker provides a default right master page for single-sided documents and default right and left master pages
for double-sided documents. A MIF file can either use the default page layout or provide a custom layout.

Using the default layout

If you don’t need to control the page layout of a document, you can use the default page layout by putting all of the
document’s text into a Text Fl owstatement. When reading the file, the MIF interpreter creates default master pages
and body pages. The MIF file creates a single-column text frame for the body pages to contain the document’s text.
The MIF interpreter associates the text flow with this text frame.

The following example is in the sample file def page. mi f :

<MIFFile 7.00># Hand generated

<TextFlow # All document text is in this text flow.
<TFTag "A'> # Make this a tagged text flow.
<TFAutoConnect Yes> # Automatically connect text frames.
<Para
<ParaLine

<String “This paragraph appears on a body page within a'>
<String * text flow tagged A.'>
> # end of Paraline
> # end of Para
> # end of TextFlow
End of MIFFile
A text flow must be tagged, and it must include <TFAut oConnect Yes>; otherwise, when the user adds text to the
document, FrameMaker won’t create additional pages and text frames to hold the added text.

Creating a simple page layout

If you want some control of the page layout but do not want to create master pages, you can use the Docunent
substatements DPageSi ze, DVar gi ns, and DCol unms to specify the page size, margins, and number of columns in
the text frame in the document. The MIF interpreter uses this information to create master pages and body pages.
These statements correspond to the Normal Page Layout options.

The following example is in the sample file col un ay. ni f:

<MIFFile 7.00># Hand generated
<Document
<DPageSize 7.5" 9.0"># Set the page size.
<DMargins 2" 1" .5" .5"># Set the margins.
<DColumns 1># Set the number of columns in the default
text frame.
<DTwoSides No># Set document to single-sided.
> # end of Document
<TextFlow# Document text is in this text flow.
<TFTag ‘A'># Make this a tagged text flow.
<TFAutoConnect Yes># Automatically connect text frames.
<Para
<ParaLine
<String "This paragraph appears on a body page within a'>
<String ° text flow tagged A.">

> # end of ParaLine

32

Online manual

ADOBE FRAMEMAKER 7.0 |33
Using MIF Statements

> # end of Para
> # end of TextFlow
End of MIFFile

Creating a single-sided custom layout

If the document that you're importing needs a custom master page, you must specify a custom page layout. For
example, a document might need a master page for background graphics.

To create a custom layout for a single-sided document, you do the following:

* Create a right master page.

* Create a single, empty body page.

* Create an empty, tagged text flow that is linked to the master page.

* Create a tagged text flow that is linked to the body page and contains all the document’s text.

The MIF code shown in this section is also in the sample file sngl page. mi f.

To create the master page

To create a master page layout, use the Page statement to create the page and use the Text Rect statement to create
the text frame.

To specify the number of text columns in the text frame, use the TRNunCol urms statement. By default, if the text
frame’s specification does not include this statement, the text frame has only one column.

This example sets up a right master page with a text frame containing one text column:

<MIFFile 7.00># Hand generated
<Document
<DPageSize 7.5" 9.0"># Set the document page size.
<DTwoSides No># Make this a single-sided document.
> # end of Document
<Page # Create a right master page.
<PageType RightMasterPage>
<PageTag "Right'>
<TextRect# Set up a text frame.
<ID 1># Give the text frame a unique ID.
<Pen 15># Set the pen style.
<Fill 15># Set the fill pattern (none).
<ShapeRect 2" 1" 5" 7.5"># Specify the text frame size.
<TRNumColumns 1># Specify number of text columns.
<TRColumnGap 0.0"># Specify gap between text columns.
> # end of TextRect
> # end of Page
The | Dstatement assigns a unique ID number to this text frame. You must give text frames a unique ID in a MIF file;
other objects that require unique IDs are anchored graphic frames and table instances.

To create an empty body page

To create the body page, use the Page statement. Then use the Text Rect statement to create a text frame with dimen-
sions that are exactly the same as the text frame on the master page. Give the text frame a unique ID:

Online manual

ADOBE FRAMEMAKER 7.0 |34
Using MIF Statements

<Page
<PageType BodyPage>
<PageBackground ‘Default'>
<TextRect
<ID 2> # This text frame has a unique ID.
The body page dimensions match those of the
master page.
<ShapeRect 2" 1" 5" 7.5">
<TRNumColumns 1># The column layout must also match.
<TRColumnGap 0.0">
> # end TextRect
> # end Page
If the dimensions (specified by the ShapeRect statement) and column layout (specified by the TRNunCol unms and
TRCol unmGap statements) of the master page and body page do not match, the body page will not use the page layout
from the master page. Instead, the body page will use the page layout defined for the body page.

To create the text flow for the master page

The text flow for the master page is not contained in the Page statement; instead, it is contained in a Text Fl ow
statement that is linked to the text frame on the master page. The Page statements must come before any Text FI ow
statements.

Link the text flow to the master page’s text frame by using the Text Rect | D statement to refer to the text frame’s
unique ID:

<TextFlow
<TFTag "A'># The text flow must be tagged.
<TFAutoConnect Yes># Autoconnect must be turned on.
<Para
<ParaLine
<TextRectID 1># Refers to text frame ID on master page.
> # end of Paraline
> # end of Para
> # end of TextFlow
The text flow for the master page must be empty. Be sure to give the text flow the same flow tag that you give the text
flow for the body page and to turn on the autoconnect feature.

To create the text flow for the body page

The text flow for the body page is contained in a separate Text Fl owstatement that is linked to the body page’s text
frame. The text flow contains the actual text of the document in one or more Par a statements. If text overflows the
first text frame, the MIF interpreter creates another body page with a layout that matches the right master page and
pours text into the body page’s text frame.

<TextFlow
<TFTag ‘A'>
<TFAutoConnect Yes>
<Para
<TextRectID 2>
<PgfTag ‘Body'>
<Paraline

<String ‘This appears on a body page within a text flow'>

Online manual

ADOBE FRAMEMAKER 7.0
Using MIF Statements

<String * tagged A.'>

> # end of ParaLine
> # end of Para
> # end of TextFlow
Why one body page?

The method you use to create body pages is different from the method that FrameMaker uses when it writes a MIF
file. When FrameMaker writes a file, it knows where each page break occurs in the file, so it creates a series of Page

statements that each contain the text and graphics located on that page. When you are importing a document, you

do not know where page breaks will fall, so you cannot break the document into a series of Page statements. Instead,
you simply create one text flow for the entire document and link it to a single, empty body page. When the MIF inter-
preter reads the file, it creates as many pages as the document requires and gives each page the background specified
by the master page.

Creating a double-sided custom layout

If you import a two-sided document, you might need to specify different page layouts for right and left pages. For
example, a document might have a wider inside margin to allow extra room for binding. You can do this in a MIF
file by creating and linking a second master page and a second body page. As with a single-sided layout, all the
document’s text is in one text flow. When the MIF interpreter reads the file, it adds alternate left and right body pages
to the document. You can control whether the document starts with a right page or a left page by using the DPari ty
statement.

For an example of a document with left and right master pages, see the sample file dbl page. ni f .

Creating a first master page

In addition to left and right master pages, you can create custom master page layouts that you can apply to body
pages. For example, some books have a special layout for the first page in a chapter.

In a MIF file, you can create as many master pages as you need, but you cannot apply all of them to the appropriate
body pages. You can only apply a left page, a right page, and one additional custom master page to the body pages.
Furthermore, you can only link the custom master page to the first page in a document.

When you are importing a document into FrameMaker, you do not know how much text the MIF interpreter will
put on a page; you can only determine where the first page begins. When the interpreter reads the MIF file, it applies
the custom master page layout to the first page in the document. For each subsequent page, it uses the DPari t y and
DTwoSi des statements to determine when to add a left page and when to add a

right page.

Other master page layouts that you've defined are not lost when the interpreter reads a MIF file. The user can still
apply these page layouts to individual body pages.

For an example of a MIF file with a first page layout, see the sample file f r st page. mi f .

Adding headers and footers

Headers and footers are defined in untagged text flows on the master pages of a document. When FrameMaker
creates default master pages, it automatically provides untagged text flows for headers and footers.

If you are importing a document that has headers and footers, you define additional text frames on the master pages.
Link an untagged text flow to each additional text frame on the master page. The untagged text flow contains the text
of the header or footer.

35

Online manual

ADOBE FRAMEMAKER 7.0
Using MIF Statements

For an example of a MIF file with a footer, see the sample file f oot er s. ni f . Note that the footer text flow contains
a variable; you can place variables only in untagged text flows on a master page, not in tagged flows.

Creating markers

A FrameMaker document can contain markers that hold hidden text and mark locations. For example, you use
markers to add index entries, cross-references, and hypertext commands to a document. FrameMaker provides both
predefined marker types and markers that you can define as needed. (For more information about markers and
marker types, see page 124.)

Within a FrameMaker document, you insert a marker by choosing the Marker command from the Special menu. In
a MIF file you insert a marker by using a Mar ker statement. The Mar ker statement specifies the marker type and the
marker text.

The following example inserts an index marker:

<Para
<Paraline
<Marker
<MType 2># Index marker
<MText “Hello world'># Index entry
> # end of Marker
<String ‘Hello world'>
> # end of ParaLine

> # end of Para

The Mrext statement contains the complete index entry.

When FrameMaker writes a Mar ker statement, the statement includes an MCur r Page substatement with the page
number on which the marker appears. You do not need to provide an MCur r Page statement when you generate a
MIF file; this statement is ignored when the MIF interpreter reads a MIF file.

Creating cross-references

In a FrameMaker document, you can create cross-references that are automatically updated. A cross-reference can
refer to an entire paragraph or to a particular word or phrase in a paragraph. The text to which a cross-reference
points is called the reference source; the actual location of the cross-reference is the reference point.

The format of a cross-reference determines its appearance and the wording. Cross-reference formats include building
blocks, instructions to FrameMaker about what information to extract from the reference source. A common
building block is <$pagenunr, which FrameMaker replaces with the page number of the reference source. Another
common building block is <$paratext>, which FrameMaker replaces with the text content of the paragraph,
excluding autonumbering and special characters such as tabs and forced line breaks.

Within a FrameMaker document, you insert and format cross-references by choosing Cross-Reference from the
Special menu. In a MIF file, you create a cross-reference as follows:

* Create the format of cross-references by using XRef For mat s and XRef For mat statements.
* Insert a marker at the reference source by using a Mar ker statement.

+ Insert the reference point by using an XRef statement.

Online manual

36

ADOBE FRAMEMAKER 7.0
Using MIF Statements

Creating cross-reference formats

The cross-reference formats for a document are defined in one XRef For mat s statement. A document can have only
one XRef For mat s statement.

The XRef For mat s statement contains one or more XRef For mat statements that define the cross-reference formats.
A cross-reference format consists of a name and a definition.

<XRefFormats
<XRefFormat
<XRefName ‘Page'>
<XRefDef ‘page\x11 <$pagenum\>'>
> # end of XRefFormat
> # end of XRefFormats
The name can be any string allowed in a MIF file (see “Character set in strings” on page 7). In this example, a
nonbreaking space (\ x11) appears between the word “page” and the page number. Each cross-reference format must
have a unique name; names are case-sensitive. The cross-reference definition contains text and cross-reference
building blocks. See your user’s manual or the online Help system for a list of building blocks.

Inserting the reference source marker

To mark the location of the reference source, insert a Mar ker statement at the beginning of the reference source. The
following example creates a cross-reference to a heading:

<Para
<PgfTag ‘Heading'>
<Paraline
<Marker
<MType 9># Identifies this as a cross-reference
<MText "34126: Heading: My Heading'>
Cross-reference source
> # end of Marker
<String *"My Heading'>
> # end of ParaLine
> # end of Para
The <MIype 9> statement identifies this as a cross-reference marker; it is required. The Mrext statement contains
the cross-reference source text, which must be unique. When FrameMaker writes a cross-reference, it adds a unique
number and the paragraph tag to the MIext statement, as shown in the previous example. While the number is not
required, it guarantees that the cross-reference points to a unique source.

Inserting the reference point

The final step in creating a cross-reference is to insert an XRef statement at the position in text where the cross-
reference should appear. The XRef statement provides the name of the cross-reference format (defined in
XRef For mat), the source text, and the pathname of the file containing the source:

<Para
<PgfTag ‘Body'>
<ParaLine

'

<String ‘This is a cross-reference to '>
<XRef

<XRefName ‘Page'># Cross-reference format

37

Online manual

ADOBE FRAMEMAKER 7.0
Using MIF Statements

<XRefSrcText *34126: Heading: My Heading'>
Source text
<XRefSrcFile *'># File containing source
> # end of XRef
<XRefEnd>
<String *.'>
> # end of Paraline
> # end of Para
The format name must exactly match the name of a format defined in XRef For mat s. The source text must be unique
and must match the string in the MText statement in the corresponding reference point marker. The XRef SrcFi | e
statement is only required if the reference source is in a different file from the reference point. It must be a valid MIF
filename (see “Device-independent pathnames” on page 8).

You must also supply an XRef End statement after the XRef statement.

How FrameMaker writes cross-references

When FrameMaker writes a cross-reference, it provides the actual text that will appear at the reference point. This
information is not required in a MIF input file. The previous example would be written as follows:

<XRef
<XRefName ‘Page'>
<XRefSrcText *34126: Heading: My Heading'>
<XRefSrcFile *'>
> # end of XRef
<String ‘page'># The text that appears in the document;
<Char HardSpace ># in this case, a page number followed a
<String ‘1'># hard space and the number 1
<XRefEnd># End of cross-reference text
If you do include the text of the cross-reference, make sure that the XRef End statement follows the text. FrameMaker
considers everything between the XRef statement and the XRef End statement to be part of the cross-reference.

Creating variables

In a FrameMaker document, variables act as placeholders for text that might change. For example, many documents
use a variable for the current date. A variable consists of a name, which is how you choose a variable, and a definition,
which contains the text and formatting that appear where a variable is inserted.

FrameMaker provides two kinds of variables: system variables that are predefined by FrameMaker, and user variables
that are defined by the user. System variables contain building blocks that allow FrameMaker to extract certain infor-
mation from the document or the system, such as the current date or the current page number, and place it in text.
Headers and footers frequently use system variables. You can modify a system variable’s definition but you cannot
create new system variables. User variables contain only text and formatting information.

Within a FrameMaker document, you insert and define variables by choosing Variable from the Special menu. The
variable appears in the document text where it is inserted.

In a MIF file, you define and insert variables as follows:

¢ Define and name the document variables by using Var i abl eFor mat s and Var i abl eFor mat statements.

* Insert the variable in text by using the Vari abl e statement.

38

Online manual

ADOBE FRAMEMAKER 7.0
Using MIF Statements

Defining user variables

All variable definitions for a document are contained in a single Var i abl eFor nat s statement. The Vari abl e-
For mat s statement contains a Var i abl eFor mat statement for each document variable. The Var i abl eFor nat
statement provides the variable name and definition.

<VariableFormats

<VariableFormat

<VariableName "Product Number'>

<VariableDef *A15-24'>

> # end of VariableFormat
> # end of VariableFormats
The variable name must be unique; case and spaces are significant. For a user variable, the variable definition can
contain only text and character formats; you can provide any character format defined in the Character Catalog. The
following example applies the default character format Emphasis to a variable:

<VariableFormat

<VariableName "Product Number'>

<VariableDef *<Emphasis\>A15-24<Default \xa6 Font\>'>
> # end of VariableFormat
You can specify character formats as building blocks; that is, the character format name must be enclosed in angle
brackets. Because of MIF parsing requirements, you must use a backslash sequence for the closing angle bracket. You
must also use hexadecimal notation for special characters in the variable definition. In this example, \ xa6 is the hex
notation for the paragraph symbol (¥). For more information about special characters in strings, see page 7.

Using system variables

Whenever you open or import a MIF file, the MIF interpreter provides the default system variables. You can redefine
a system variable but you cannot provide new system variables.

System variables are defined by a Var i abl eFor mat statement. For example, the following statement shows the
default definition for the system variable Page Count:

<VariableFormat

<VariableName "Page Count'>

<VariableDef "<$lastpagenum\>">
> # end of VariableFormat
System variables contain building blocks that provide certain information to FrameMaker. These building blocks are
preceded by a dollar sign ($) and can only appear in system variables. Some system variables have restrictions on
which building blocks they can contain. These restrictions are discussed in your user’s manual and in the online Help
system. You can add any text and character formatting to any system variable.

Inserting variables

To insert a user variable or a system variable in text, use the Var i abl e statement. The following example inserts the
system variable Page Count into a paragraph:

<Para
<Paraline
<String ‘This document has '>
<Variable
<VariableName "Page Count'>
> # end of Variable

39

Online manual

ADOBE FRAMEMAKER 7.0 |40
Using MIF Statements

<String ‘pages.'>
> # end of ParaLine
> # end of Para

The Vari abl eNane string must match the name of a variable format defined in the Vari abl eFor nat s statement.
Variables are subject to the following restrictions:
* You cannot place any variable in a tagged text flow on a master page.

* The system variable Current Page # and the system variables for running headers and footers can only appear
in untagged text flows on a master page.

¢ The system variables Table Continuation and Table Sheet can only appear in tables.

Creating conditional text

You can produce several slightly different versions of a document from a single conditional document. In a condi-
tional document, you use condition tags to differentiate conditional text (text that is specific to one version of the
document) from unconditional text (text that is common to all versions of the document).

In a MIF file, you create a conditional document as follows:

* Create the condition tags to be used in the document and specify their format via Condi t i onCat al og and
Condi ti on statements.

* Apply one or more condition tags to the appropriate sections of the document via Condi ti onal and Uncondi -
tional statements.

+ Show or hide conditional text by using the CSt at e statement.

Creating and applying condition tags
In MIEF, all condition tags are defined in a Condi t i onCat al og statement, which contains one or more Condi t i on

statements. A Condi t i on statement specifies the condition tag name, the condition indicators (how conditional text
appears in the document window), a color, and a state (either hidden or shown).

For example, the following statements create a Condition Catalog with two conditional tags named Summer and
Winter:

<ConditionCatalog
<Condition
<CTag ‘Summer'># Condition tag name
<CState CHidden ># Condition state (now hidden)
<CStyle COverline ># Condition indicator
<CColor *Blue'># Condition indicator
> # end of Condition
<Condition
<CTag "Winter'>
<CState CShown ># This condition is shown
<CStyle CUnderline >
<CColor "Red'>
> # end of Condition
> # end of ConditionCatalog

Online manual

ADOBE FRAMEMAKER 7.0 |41
Using MIF Statements

To mark conditional and unconditional passages within document text, use Condi ti onal and UnCondi ti onal
statements as shown in the following example:

<Para
<ParaLine
<String "Our company makes a full line of '>
Unconditional text
<Conditional# Begin conditional text
<InCondition “Winter'># Specifies condition tag
> # end of Conditional
<String ‘warm and soft sweaters'>
Conditional text
<Conditional# Begin conditional text
<InCondition ‘Summer'># Specifies condition tag
> # end of Conditional
<String “cool and comfortable tank tops'>
<Unconditional >
<String ° for those '># Unconditional text
> # end of Paraline
<ParaLine
<Conditional
<InCondition *Winter'>
> # end of Conditional
<String ‘chilly winter'>
<Conditional
<InCondition ‘Summer'>
> # end of Conditional
<String “hot summer'>
<Unconditional >
<String * days.'>
> # end of ParaLine
> # end of Para

You can apply multiple condition tags to text by using multiple | nCondi t i on statements:

<Conditional
<InCondition *Winter'>
<InCondition ‘Summer'>

> # end of Conditional

Showing and hiding conditional text

If you are creating a MIF file for FrameMaker to read, you can specify whether conditional text is shown or hidden
simply by setting the CSt at e property for that condition. In the previous example, all text with the condition tag
Summer is hidden and text marked with the condition tag W nt er is shown.

You can show all conditional text in a document by using the Document statement <DShowAl | Condi ti ons Yes>.
To allow selective display of conditions, use <DShowAl | Condi ti ons No>.

You can turn off the display of condition indicators by using the Docunent statement <DDi spl ayOverri des No>.

Online manual

ADOBE FRAMEMAKER 7.0 |42
Using MIF Statements

How FrameMaker writes a conditional document

If you are converting a MIF file that was generated by FrameMaker, you need to understand how FrameMaker writes
a file that contains hidden conditional text.

When FrameMaker writes a MIF file, it places all hidden conditional text in a text flow with the tag name HI DDEN.
Within the document text flow, a conditional text marker, <Mar ker <MType 10>>, indicates where hidden condi-
tional text would appear if shown.

The marker text contains a plus sign (+) followed by a unique five-digit integer. The corresponding block of hidden
text is in the hidden text flow. It begins with a conditional text marker containing a minus sign (—) and a matching
integer and ends with a marker containing an equal sign (=) and the same integer. One or more Par a statements
appear between the markers. If the hidden conditional text doesn’t span paragraphs, all the text appears in one Par a
statement. If the hidden text spans paragraphs, each end of paragraph in the conditional text forces a new Par a
statement in the hidden text flow.

The following example shows how FrameMaker writes the sentence used in the previous example:

This text flow contains the sentence as it appears in
the document body.
<TextFlow
<TFTag ‘A'>
<TFAutoConnect Yes >
<Para
<ParaLine
<String "Our company makes a full line of '>
This marker indicates that hidden text appears in the
hidden text flow.
<Marker
<MType 10>
<MText "+88793"'>
<MCurrPage 0>
> # end of Marker
<Conditional
<InCondition ‘Summer'>
> # end of Conditional
<String “cool and comfortable tank tops'>

<Unconditional >

> # end of Para
> # end of TextFlow
This text flow contains the hidden conditional text.
<TextFlow
<TFTag "HIDDEN'>
<Para
<PgfEndCond Yes >
<ParaLine
<Marker
<MType 10>
This marker shows the beginning of hidden text.
Its ID matches the marker ID in the body text flow.
<MText *-88793"'>

Online manual

ADOBE FRAMEMAKER 7.0 |43
Using MIF Statements

<MCurrPage 0>
> # end of Marker
<Conditional
<InCondition "Winter'>
> # end of Conditional
Here's the hidden text.
<String ‘chilly winter'>
<Marker
<MType 10>
This marker shows the end of hidden text. It must
match the marker that begins with a minus sign (-).
<MText ‘=88793">
<MCurrPage 0>
> # end of Marker
>
> # end of Para

> # end of TextFlow

Including template files

When you write an application, such as a filter or a database publishing application, to generate a MIF file, you have
two ways to include all formatting information in the file:

* Generate all paragraph formats and other formatting information directly from the application.

* Create a template document in FrameMaker, save it as a MIF file, and include the template file in your generated
MIF file.

It’s usually easier to create a template in FrameMaker than it is to generate the formatting information directly.
To create the template as a MIF file, do the following:

1 Create the template in FrameMaker and save it as a MIF file.

2 Edit the MIF file to preserve the formatting catalogs and the page definitions and delete the text flow.

3 Generate the text flow for your document and use thei ncl ude statement to read the formatting information from
the template.

Creating the template

Create the template document in FrameMaker. Define the paragraph and character formats, table formats, variable
and cross-reference formats, master pages, and any other formatting and page layout information that your
document needs. Generally, a template contains some sample lines that illustrate each format in the document. Save
the completed template as a MIF file. For more information about creating templates, see your user’s manual.

Editing the MIF file

You need to edit the resulting MIF file to extract just the formatting and page layout information.

1 Delete the MIFFile statement.

2 Search for the first body page and locate its TextRect statement.

Online manual

ADOBE FRAMEMAKER 7.0 |44
Using MIF Statements

To find the first body page, search for the first occurrence of <PageType BodyPage>. Suppose the first body page

in your MIF file looks like this:

<Page
<Unique 45155>
<PageType BodyPage >
<PageNum '1'>
<PageSize 8.5" 11.0">
<PageOrientation Portrait >
<PageAngle 0.0>
<PageBackground ‘Default'>
<TextRect
<ID 7>
<Unique 45158>
<Pen 15>
<Fill 15>
<PenWidth 1.0 pt>
<ObColor *Black'>
<DashedPattern
<DashedStyle Solid>
> # end of DashedPattern
<ShapeRect 1.0" 1.0" 6.5" 9.0">
<TRNext 0>
> # end of TextRect
> # end of Page

The ID for the Text Rect on this body page is 7. Remember this ID number. If there is more than one Text Rect

on the body page, remember the ID of the first one.

3 Locate the text flow associated with the TextRect statement on the first body page and delete it.

Suppose you are working with the previous example. You would search for the statement <Text Rect I D 7> to

locate the text flow. It might look similar to the following:

<TextFlow
<Notes># end of Notes
<Para
<Unique 45157>
<PgfTag ‘MyFormat'>
<Paraline
<TextRectID 7>

<String ‘A single line of text.'>

>
> # end of Para
> # end of TextFlow
Delete the entire text flow.

4 From your application, generate a MIF file that includes the edited template file.

Suppose the edited MIF file is called nyt enpl at e. mi f . Your application would generate the following two lines

at the top of any new MIF file:

<MIFFile 7.00># Generated by my application

include (mytemplate.mif)

Online manual

ADOBE FRAMEMAKER 7.0 |45
Using MIF Statements

The i ncl ude statement is similar to a C #i ncl ude directive. It causes the MIF interpreter to read the contents of
the file named nyt enpl at e. i f . For more information about filenames in MIF, see “Device-independent
pathnames” on page 8.

5 From your application, generate a text flow that contains the entire document contents.

The text flow should use the ID and tag name of the text flow you deleted from the template file; this associates
the new text flow with the first body page in the template.

The entire generated MIF file would look something like this:

<MIFFile 7.00># Generated by my application
include (mytemplate.mif)
<TextFlow
<TFTag ‘A'>
<TFAutoConnect Yes>
<TextRectID 7>
<Para
<ParaLine
<String ‘This is the content of the generated document.'>
>
> # end of Para
> # end of TextFlow

A user can open the generated MIF file to get a fully formatted FrameMaker document.

Setting View Only document options

You can use MIF statements to control the display of View Only documents. A View Only document is a locked
FrameMaker hypertext document that a user can open, read, and print but not edit. You can use MIF statements to
control the appearance and behavior of the document window and to control the behavior of cross-references in
locked documents.

The MIF statements for View Only documents are intended for hypertext authors who want more control over
hypertext documents. They do not have corresponding commands in the user interface.

The View Only MIF statements described in this section must appear in a Document statement. These statements
have no effect in an unlocked document. Make sure that the Docunent statement also includes the following
substatement:

<DViewOnly Yes>

Changing the document window

You can use MIF statements to change the appearance and behavior of the document window in the following ways:

* To suppress the document window menu bar, use the following statement:

<DVi ewOnl yW nMenubar No>

This statement has no effect in the Macintosh and Windows version of FrameMaker because those versions have an
application menu bar rather than a document window menu bar.

* To suppress the display of scroll bars and border buttons in the document window, use the following statement:

<DVi ewOnl yW nBor ders No>
* To suppress selection in the document window, include the following statement:

Online manual

ADOBE FRAMEMAKER 7.0 |46
Using MIF Statements

<DVi ewOnl ySel ect No>

You can normally select text and objects in a locked document by Control-dragging in UNIX and Windows versions
or by Command-dragging in Macintosh versions. Specifying <DVi ewOnl ySel ect No> prevents all selection in a
locked document.

* To suppress the appearance of a document region pop-up menu, use the statement:

<DVi ewOnl yW nPopup No>

A document region pop-up menu is a menu activated by the right mouse button. For example, in UNIX versions of
FrameMaker, the Maker menu menu can be accessed by pressing the right mouse button. If the DVi ewOnl yW nPopup
statement has a value of No, the background menu does not appear when the right mouse button is pressed. This
statement has no effect in Macintosh and Windows versions of FrameMaker.

¢ To make a window behave as a palette window, use the following statement:

<DVi ewOnl yW nPal ette Yes>

A palette window is a command window, such as the Equations palette, that exhibits special platform-dependent
behavior. In UNIX versions of FrameMaker, a palette window can only be dismissed; it cannot be closed to an icon.
In Macintosh versions, a palette always remains in front of the active window.

In Windows versions, a palette floats outside the main application window and cannot be unlocked. To edit the
palette, you need to reset the DVi ewOnl yW nPal et t e statement to No in the MIF file before opening it in
FrameMaker.

Using active cross-references

A locked document automatically has active cross-references. An active cross-reference behaves like a hypertext
got ol i nk command; when the user clicks on a cross-reference, FrameMaker displays the link’s destination page. By
default, the destination page is shown in the same document window as the link’s source.

You can use MIF statements to turn off active cross-references and to change the type of hypertext link that the cross-
reference emulates. (By default, cross-references emulate the got ol i nk behavior.)

* To make cross-references emulate the openl i nk command, which displays the destination page in a new
document window, use the following statement:

<DVi ewOnl yXRef OpenBehavi or >

Use this setting to allow users to see both the source page and the destination page.

* To turn off active cross-references, use the following statement:

<DVi ewOnl yXRef Not Active>

Use this setting to emulate the behavior in earlier FrameMaker versions.

You can use the DVi ewOnl ySel ect statement to control whether active cross-references highlight the marker
associated with destination text.

* When cross-references are active and <DVi ewOnl ySel ect Yes> is specified, clicking a cross-reference in the
document highlights the marker associated with the destination text.

* When cross-references are active and <DVi ewOnl ySel ect User Onl y> is specified, clicking a cross-reference does
not highlight the marker. However, the user can select text in the locked document.

» When cross-references are active and <DVi ewOnl ySel ect No> is specified, clicking a cross-reference does not
highlight the marker. The user cannot select text in the locked document.

By default, clicking a cross-reference does not highlight the marker associated with the destination text but the user
can select text in the locked document.

Online manual

ADOBE FRAMEMAKER 7.0 |47
Using MIF Statements

Disabling commands

You can disable specific commands in a View Only document. For example, a hypertext author might disable copy
and print commands for sensitive documents.

To disable a command, you must supply the hex code, called an fcode, that internally represents that command in
FrameMaker. For example, you can disable printing, copying, and unlocking the document by supplying the
following statements:

<DViewOnlyNoOp 0x313># Disable printing

<DViewOnlyNoOp 0x322># Disable copying

<DViewOnlyNoOp 0xF00># Disable unlocking the document

The following table lists the files where you can find fcodes for commands:

For this version Look here

UNIX $FMHOME/ f mi ni t/ | anguage/ conf i gui / Conmands,where | anguage is the language in
use,suchasusengl i sh

Windows install_dir/ f mi ni t/ confi gui / cmds.cf g, where install_dir is the directory where
FrameMaker is installed

Macintosh f m_codes. h,which is available separately with the Frame Developer’s Kit (FDK)

See the online manual Customizing FrameMaker for more information about the commands file in UNIX versions.
For information about disabling commands on the Macintosh, see the Frame Developer’s Kit (FDK) manuals,
available separately.

Applications of MIF

You can use MIF files any time you need access to FrameMaker’s formatting capabilities. This section provides some
examples of how MIF can be used and some tips on minimizing MIF statements.

You can use MIF to:

* Share files with earlier versions of FrameMaker

¢ Perform custom document processing

* Write import and export filters for FrameMaker documents

¢ Perform database publishing

Sharing files with earlier versions

FrameMaker automatically opens documents created with an earlier version of FrameMaker (2.0 or higher).

To use an earlier version of FrameMaker (such as 5.5) to edit a document created with a later version of FrameMaker
(such as 7.0):

1 Use the newer FrameMaker product version to save the document in MIF.

2 Open the MIF file with the earlier version of FrameMaker.

Online manual

ADOBE FRAMEMAKER 7.0 |48
Using MIF Statements

Earlier versions of FrameMaker do not support all MIF statements in the current version. For example, when you use
version 5.5.6 or earlier of FrameMaker to open a document created in version 6.0 or later, MIF statements specifying
optimized PDF size are skipped. You can ignore the related error messages. However, to regain the optimized PDF size you
will need to use the Optimize Pdf Size command. For a description of the differences between MIF 7.0 and previous
versions, see , “MIF Compatibility.”

Modifying documents

You can use MIF to perform custom document processing. For example, you can create a program or write a series
of text editor macros to search for and change paragraph tags in a MIF file. You can also edit a MIF book file to easily
add or change document names in a book.

For an example of using MIF to easily update the values in a table, see “Updating several values in a table” on
page 227.

Writing filters

MIF allows you to write filters to convert data from other formats to FrameMaker format and to convert a MIF file
to another document format. While FrameMaker will change in future versions, MIF will always remain compatible
with earlier versions, so your filters can continue to write MIF files.

Import filters

MIF statements can completely describe a FrameMaker document or book file. Because documents created with
most word processors and text editors have fewer features than a FrameMaker document, your import filters
normally use only a subset of MIF statements.

To write an import filter, first determine which MIF statements describe the format of the input file. Then write a
program to translate the file from its original file format to MIE. If the imported document doesn’t use sophisticated
formatting and layout features, don’t include the corresponding MIF statements in your filter.

For example, if the file was created by a word processor, your filter should convert document text to a single

Text Fl owstatement. Ignore line and page breaks (except forced breaks) in your source document, because the text
will be repaginated by the MIF interpreter. If the document uses style sheets, convert paragraph styles to paragraph
formats in a Pgf Cat al og statement, and convert table styles to table formats in a Thl Cat al og statement.

Output filters

You can write output filters that convert a MIF file to any format you want. While you should be familiar with all
MIF statements to determine which ones you need to translate a FrameMaker document, your output filter doesn’t
need to convert all the possible MIF statements.

In most cases, a MIF description of a FrameMaker document contains more information than you need. Because
MIF appears as a series of nested statements, your output filter must be able to scan a MIF file for the information it
needs and skip over statements that it will not use.

Installing a filter

In UNIX versions, you can set up FrameMaker to automatically start a script that runs a filter based on the filename
suffix. The filter can convert a file to a MIF file. FrameMaker then interprets the MIF file, storing the results in a
FrameMaker document. For more information about installing your filter, see the online manual Customizing
FrameMaker.

Online manual

ADOBE FRAMEMAKER 7.0 |49
Using MIF Statements

Minimizing MIF statements

The following tips may help you minimize the number of MIF statements that your filter needs to generate:

+ If you are not concerned about controlling the format of a document, use the default formats that FrameMaker
provides for new documents. The user can always change formats as needed within the FrameMaker document.

+ If you are filtering a document from another application into FrameMaker and then back to the application, you
may want to import the filter’s MIF file into a FrameMaker document, save the document as a MIF file, and then
convert the file back to the original format from the MIF file generated by FrameMaker. This technique takes
advantage of FrameMaker’s syntactically complete MIF statements, but allows your filter to write a shorter MIF
file.

« If your filter needs to generate fully-formatted MIF files, you can minimize the number of formatting statements
by creating a template in FrameMaker, saving the template as a MIF file, and then including the MIF template file
in your filter’s generated document. You must edit the saved MIF template (see “Including template files” on
page 43). An advantage of this technique is that you can use the same template for more than one document.

* Define macros to ease the process of generating statements. For an example of using macros, see “Text example”
on page 216.

Database publishing

You can use MIF files to import information from an external application, such as a database, into a FrameMaker
document. This type of information transfer is often called database publishing. For example, you can write a C
program or a database script to retrieve information from a database and store that information as a MIF file. A user
can then open or import the MIF file to get a fully formatted FrameMaker document that contains up-to-date infor-
mation from the database.

There are four key elements to a typical database publishing solution:

 The database provides a system to enter, manipulate, select, and sort data. You can use any database that can create
text-based output files.

* MIF provides the data interchange format between the database and FrameMaker. MIF can completely describe a
document in ASCII format, including information such as text and graphics, page layout, and indexes and cross-
references.

 FrameMaker provides the text formatting. FrameMaker reads MIF files and dynamically manages line breaks,
page breaks, headers and footers, and graphics. The user can view, print, save, or even navigate through an online
document using hypertext commands.

Online manual

ADOBE FRAMEMAKER 7.0 |50
Using MIF Statements

* Optional control programs allow you to tightly integrate the database and FrameMaker. Some database publishing
applications are controlled entirely from the database system or through hypertext commands embedded in a
FrameMaker document. More complicated applications may require an external control program, such asa C
program that issues queries and selects a FrameMaker document template.

I
— Text
— Final Document
— — [
—_— CAD or Other —
|| lllustration
Packages -
MIF (ASCII text) I (@
| _ Database

For an example of a database publishing application, see “Database publishing” on page 227.

Debugging MIF files

When FrameMaker reads a MIF file, it might detect errors such as unexpected character sequences. In UNIX and
Windows versions, FrameMaker displays messages in a console window. In Macintosh and Windows versions, you
must turn on Show File Translation Errors in the Preferences dialog box to display messages in a window. If
FrameMaker finds an error, it continues to process the MIF file and reads as much of the document as possible.

When you are debugging MIF files, you should examine the error messages for clues. The MIF interpreter reports
line numbers for most errors. For a description of MIF error messages, see , “MIF Messages.”

In some cases, the MIF interpreter reports an “invalid opcode” message for a statement. If the statement seems
correct to you, check the statements above it. A missing right angle bracket can cause the interpreter to parse a
statement incorrectly.

If the MIF interpreter brings up an empty document when it reads your file, it has stopped trying to interpret your
file and opened an empty custom document instead. Close the document and check your MIF file for errors. Try
adding a Ver bose statement to your file to get more complete messages.

If your MIF statements are syntactically correct but cause unexpected results in the document, check for mismatched
ID numbers and check the placement of statements. Many MIF statements are position-dependent and can cause
errors if they appear in the wrong place in a file. For example, an ATh| statement that comes before its corresponding
Tbl statement causes an error.

Online manual

ADOBE FRAMEMAKER 7.0 |51
Using MIF Statements

Here are some additional tips for debugging MIF files:

* Use the Ver bose statement to generate comments. To debug a specific section of a MIF file, you can precede the
section with the <Verbose Yes> statement and end the section with the <Ver bose No> statement.

 Make sure angle brackets are balanced.

* Make sure that MIF statement names are capitalized correctly. MIF statement names and keyword values are case-
sensitive.

* Make sure that string arguments are enclosed in straight single quotation marks. (See “MIF data items” on page 5
for an example.)

* Make sure ID numbers are unique.

+ Make sure that every table anchor has a corresponding table instance, and that every table instance has an anchor
in the text flow.

» Make sure that tag names with spaces are enclosed in straight single quotation marks.
» Make sure paired statements are balanced. For example, XRef and XRef End statements must be paired.
* Make sure that right angle bracket (>) and backslash (\) characters in text are preceded by a backslash.

* Make sure that hexadecimal characters, for example \ xe6, have a space after them.

Other application tools

The Frame Developer’s Kit (FDK) provides tools that you can use to write filters and to perform custom document
processing. The FDK includes the Application Program Interface (API), which you can use to create a C application
that can create and save documents, modify documents, and interact with the user. The FDK also includes the Frame
Development Environment (FDE), which allows you to make your FDK clients portable to the platforms that
FrameMaker supports.

MIF files can be used by C applications, text processing utilities, or UNIX shell scripts. You might want to work
directly with MIF files if you are filtering large numbers of files in batch mode. You also might want to work with
MIF files if you are doing simple document processing, such as changing a few tag names, or if you are setting options
for View Only documents.

You can use the FDK and MIF files together; for example, a database publishing application can extract values from
a database and write out the information as a table in a MIF file. An FDK client can then automatically open the MIF
file as a FrameMaker document.

Where to go from here

This chapter has given you a start at working with MIF files. You can use the information in this chapter as guidelines
for working with similar MIF statements. Once you have experimented with basic MIF files, you can learn about
other MIF statements by creating small FrameMaker documents that contain a specific feature and saving these
documents as MIF files. Because FrameMaker writes complete and precise MIF code, it is your ultimate source for
learning about MIF statements.

For more information about document components not described in this chapter, see the MIF statement descrip-
tions in , “MIF Document Statements”, , “MIF Book File Statements”, and , “MIF Statements for Structured
Documents and Books”.

Online manual

MIF Document Statements

52

This chapter describes the structure of MIF document files and the MIF statements they can contain. Most MIF state-
ments are listed in the order that they appear in a MIF file, as described in the following section. If you are looking

for information about a particular statement, use this manual’s statement index to locate it. If you are looking for
information about a type of object, such as a table or paragraph, use the table of contents to locate the MIF state-

ments that describe the object.

MIF file layout

The following table lists the main statements in a MIF document file in the order that FrameMaker writes them. You

must follow the same order that FrameMaker uses, with the exception of the macro statements and control state-

ments, which can appear anywhere at the top level of a file. Each statement, except the M FFi | e statement, is

optional. Most main statements use substatements to describe objects and their properties.

Statement

Description

MIFFile

Labels the file as a MIF document file.The M FFi | e statement is required and must be
the first statement in the file.

Control statements

Establish the default units in a Uni t s statement, the debugging setting in a \VVer bose
statement, and comments in a Comrent statement.These statements can appear any-
where at the top level as well as in some substatements.

Macro statements

Define macros with a def i ne statement and read in files with an i ncl ude statement.
These statements can appear anywhere at the top level.

ColorCatalog Describes document colors. The Col or Cat al 0g statement contains Col or state-
ments that define each color and tag.

ConditionCatalog Describes condition tags.The Condi t i onCat al og statement contains Condi t i on
statements that define each condition tag and its properties.

CombinedFontCatalog Describes combined fonts.The Conbi nedFont Cat al og statement contains Com
bi nedFont Def n statements that define each combined font and its component fonts.

PgfCatalog Describes paragraph formats.The Pgf Cat al og statement contains Pgf statements
that define the properties and tag for each paragraph format.

ElementDefCatalog Defines the contents of the Element Catalog for a structured document. For more infor-
mation, see ,"MIF Statements for Structured Documents and Books.”

FmtChangeListCatalog Defines the contents of the Format Change List Catalog for a structured document. For
more information, see ,”MIF Statements for Structured Documents and Books.”

FontCatalog Describes character formats. The Font Cat al 0g statement contains Font statements
that define the properties and tag for each character format.

RulingCatalog Describes ruling styles for tables. The Rul i ngCat al og statement contains Rul i ng
statements that define the properties for each ruling style.

TblCatalog Describes table formats.The Tbl Cat al 0g statement contains Thl For mat state-
ments that define the properties and tag for each table format.

KumihanCatalog Contains the Kumihan tables that specifz line compisition rules for Japanese text.

Views Describes color views for the document.The Vi ews statement contains Vi ewstate-

ments that define which colors are visible in each color view.

Online manual

ADOBE FRAMEMAKER 7.0 |53

MIF Document Statements

Statement

Description

VariableFormats

Defines variables.The Var i abl eFor mat s statement contains Var i abl eFor mat
statements that define each variable.

MarkerTypeCatalog

Defines a catalog of user-defined markers for the current document.The Mar ker Type-
Cat al og statement contains Mar ker TypeCat al 0g statements that specify each
user-defined marker.

XRefFormats

Defines cross-reference formats.The XRef For mat s statement contains XRef For -
mat statements that define each cross-reference format.

Document

Controls document features such as page size, margins, and column layout. Because the
MIF interpreter assumes the same page defaults as the New command, this section is nec-
essary only if you want to override those default settings.

BookComponent

Provides the setup information for files generated from the document. Book Conpo-
nent statements describe the filename, filename suffix, file type, and paragraph tags or
marker types to include.

InitialAutoNums

Provides a starting value for the autonumber series in a document.

Dictionary

Lists allowed words in the document.

AFrames

Describes all anchored frames in the document.The AFr anmes statement contains

Fr ame statements that define the contents ID number of each anchored frame. Later in
the MIF file, where the document contents are described, the MIF file must include an
AFr ane statement that corresponds to each Fr ame statement.The AFr ane statement
identifies where a specific anchored frame appears in a text flow; it need only supply the
frame’s ID number.

Tbls

Describes all tables in the document.The Tbl s statement contains Thl statements that
define the contents of each table and its ID number. Later in the MIF file, where the docu-
ment contents are described, the MIF file must include a short ATbl statement that cor-
responds to each Thl statement.The ATbl statement identifies where a specific table
appears in a text flow; it need only supply the table’s ID number.

Page

Describes the layout of each page in the document.The description includes the layout of
each page, the dimensions of the text frames, and the objects and other graphic frames
on that page. A MIF file created by FrameMaker includes a Page statement for each page
in the document, including the master pages.When you write an import filter, you can
omit Page statements; the MIF interpreter repaginates the document as needed.

TextFlow

Represents the actual text in the document. Within Text FI owstatements, the text is
expressed in paragraphs which in turn contain paragraph lines. Line endings of Par a-
Li ne statements are not significant because the MIF interpreter wraps the contents of
Par aLi ne statements into paragraphs.

MIFFile statement

The M FFi | e statement identifies the file as a MIF file. The M FFi | e statement is required and must be the first line
of the file with no leading white space.

Syntax

<M FFi | e versi on> #comrent

(Required) Identifies a MIF file

The ver si on argument indicates the version number of the MIF language used in the file, and corment shows the

name and version number of the program that generated the file. For example, a MIF file saved in version 7.0 of

FrameMaker begins with the following line:

Online manual

ADOBE FRAMEMAKER 7.0 |54
MIF Document Statements

<MIFFile 7.00> # Generated by FrameMaker 7.0

MIF is compatible across versions, so a MIF interpreter can parse any MIF file. The results may sometimes differ from
your intentions if a MIF file describes features that are not included in FrameMaker that reads the MIF file. For more
information, see , “MIF Compatibility.”

Control statements

Control statements set defaults, provide debugging information, and insert comments.

Units statement

The Uni t s statement specifies the default units for dimensions and coordinates in the document. It can appear
anywhere at the top level or within any statement.

Syntax

<Units keywor d> Default units for document

keywor d can be one of:
Ui n

Ucm

Umm

Upi ca

Upt

Udd

Ucc

Usage

If no Uni t s statement is provided, the default value is Ui n. A Uni t s statement remains in effect until another Uni t s
statement is encountered. When FrameMaker writes a MIF file, it uses the document’s current display units.

CharUnits statement

The Char Uni t s statement specifies the default units for measuring font size and line spacing. This is to accom-
modate the Japanese “Q” units of measurement. This statement can appear anywhere at the top level or within any
statement.

Syntax
<CharUnits keywor d> Default units for font size and line spacing
keywor d can be one of:
CUpt
R

Verbose statement

The Ver bose statement turns on a debugging mode for MIE. It can appear anywhere at the top level or within any
statement.

Syntax

<Verbose bool ean> Yes turns on debugging information

Online manual

ADOBE FRAMEMAKER 7.0 |55
MIF Document Statements

Usage

When Verbose mode is on, the MIF interpreter writes detailed stream of processing descriptions to a window. In
UNIX versions of FrameMaker, these descriptions appear in the window from which FrameMaker was started. To
display messages in Windows and Macintosh versions, you must turn on Show File Translation Errors in
FrameMaker’s Preferences dialog box. The messages appear in a console window in Windows and in an Error Log
window on the Macintosh. The processing descriptions can be quite long, but may be essential for debugging a
program that creates MIF for input to FrameMaker. A Ver bose statement can occur unnested or within markup
statements, as explained later in this chapter. A Ver bose statement remains in effect until the interpreter encounters
another Ver bose statement that changes the setting.

Comment statement

The Comment statement identifies an optional comment.

Syntax

<Comment conment-text> Identifies a comment

Usage

Comments can appear within Conment statements, or they can follow a number sign (#). When it encounters a
number sign, the MIF interpreter ignores all text until the end of the line, including angle brackets.

Because Comment statements can be nested within one another, the MIF interpreter examines all characters following
an angle bracket until it finds the corresponding angle bracket that ends the comment.

<Comment - The following statements define the paragraph formats>

<Comment <These statements have been removed: <Font <FBold> <FItalic>>>>

The MIF interpreter processes number signs within Comment statements as normal comments, ignoring the
remainder of the line.

<Comment - When a number sign appears within a <Comment> statement,
the MIF interpreter ignores the rest of the characters in that
line--including angle brackets < >.>

End of <Comment> Statement.

Macro statements

MIF has two statements that allow you to define macros and include information from other files. Although these
statements usually appear near the beginning of a MIF file, you need not put them in that position. However, the
MIF interpreter does not interpret a macro that occurs before its definition.

define statement

The def i ne statement creates a macro. When the MIF interpreter reads a MIF file, it replaces the macro name with
its replacement text. A def i ne statement can appear anywhere in a MIF file; however, the macro definition must
appear before any occurrences of the macro name.

Syntax

define (name, replacement) Creates a macro

Online manual

ADOBE FRAMEMAKER 7.0 |56
MIF Document Statements

Usage

Once a macro has been defined, you can use the macro name anywhere that the replacement text is valid. For
example, suppose you define the following macro:

define (Bold, <Font <FWeight "Bold' >>)
When you use the macro in MIF statements, write <Bol d>. The interpreter replaces <Bol d> with <Font <FWi ght
" Bol d' >>. Note that it retains the outer angle brackets in the replacement text.

Note that when you use a macro in a MIF file, you must enclose macro names in brackets to comply with the MIF
syntax (for example, write <Bol d> instead of Bol d). The MIF parser requires these brackets to interpret the macro
correctly.

include statement

The i ncl ude statement reads information from other files. It is similar to an #i ncl ude statement in a C program.
When the MIF interpreter reads a MIF file, it replaces the i ncl ude statement with the contents of the included file.
Ani ncl ude statement can appear anywhere in a MIF file. However, make sure that the contents of the included file
appear in a valid location when they are read into the MIF file.

Syntax

i ncl ude (pathnane) Readsin afile

Usage

The pat hnane argument specifies a UNIX-style pathname, which uses a slash (/) to separate directory names (for
example, / usr/ doc/ t enpl at e. i f). For the Macintosh and Windows versions of FrameMaker, use the following
guidelines for specifying absolute pathnames:

+ For Macintosh versions, start an absolute pathname with a slash and the volume name. For example, to include
the file MyFi | e from the volume MacVol une, specify the pathname / MacVol une/ MyFi | e.

 For Windows versions, start an absolute pathname with the drive name. For example, to include the file
nyfil e. doc from the directory nydi r onthec: drive, specify the pathnamec: / nydi r/ nyfi | e. doc. Don’t start
an absolute path with a slash (/).

If you specify a relative pathname, the MIF interpreter searches for the file to include in the directory or folder that
contains the file being interpreted. In UNIX versions of FrameMaker, the MIF interpreter also searches the
$FMHOME/ f i ni t and the $SFMHOVE/ f mi ni t/ fi | t er s directories for a file with a relative pathname.

In general, you would use ani ncl ude statement to read a header file containing def i ne statements that a filter needs
to translate a file. Isolate the data in a header file to simplify the process of changing important mappings. You can
also use an i ncl ude statement to read in a template file containing formatting information. Your application can
then simply generate a document’s text. For more information, see “Including template files” on page 43.

Conditional text

FrameMaker documents can contain conditional text. In a MIF file, the condition tags are defined by a Condi ti on
statement, which specifies whether the condition tag is hidden or shown. The condition tags for a document are
stored in a Condi t i onCat al og statement.

Within the text flow, Condi ti onal and Uncondi ti onal statements show where conditional text begins and ends.

Online manual

ADOBE FRAMEMAKER 7.0 (57
MIF Document Statements

ConditionCatalog statement

The Condi ti onCat al og statement defines the contents of the Condition Catalog. A MIF file can have only one
Condi ti onCat al og statement, which must appear at the top level in the order given in “MIF file layout” on page 52.

Syntax

<ConditionCatalog
<Condi tion..» Defines a condition tag (see “Condition statement,” next)
<Condi tion..> Additional statements as needed

> End of Condi t i onCat al og statement

Condition statement

The Condi t i on statement defines the state of a condition tag and its condition indicators, which control how condi-
tional text is displayed in the document window. The statement must appear in a Condi t i onCat al og statement. The
property statements can appear in any order.

Syntax

<Condition

<CTag string> Condition tag string

<Cst at e keywor d> Whether text with this tag is shown or hidden

keywor d can be one of:
CHi dden
CShown

<CStyl e keyword> Format of text with this condition

keywor d can be one of:
CAsl s

CUnder | i ne

CDoubl eUnder | i ne
Cstrike
COverline
CChangeBar

<CCol or tagstring> Color for condition tag (see “ColorCatalog statement” on page 78)

<CSeparation integer> Colorforcondition tag; no longer used, but written out by FrameMaker for backward-
compatibility (see “Color statements” on page 244)

> End of Condi t i on statement

Conditional and Unconditional statements

The Condi ti onal statement marks the beginning of conditional text and the Uncondi ti onal statement marks the
end. These statements must appear in a Row or Par alLi ne statement.

Syntax

<Conditional Begin conditional text

Online manual

ADOBE FRAMEMAKER 7.0 |58

MIF Document Statements

<l nCondi tion tagstring> Specifies condition tag from Condition Catalog
<l nCondi tion tagstring> Additional statements as needed
> End of Condi t i onal statement
<Unconditional> Returns to unconditional state

Paragraph formats

A paragraph format is defined in a Pgf statement. Paragraph formats can be defined locally or stored in the
Paragraph Catalog, which is defined by a Pgf Cat al og statement.

PgfCatalog statement

The Pgf Cat al og statement defines the contents of the Paragraph Catalog. A MIF file can have only one Pgf Cat al og
statement, which must appear at the top level in the order given in “MIF file layout” on page 52.

Syntax
<PgfCatalog
<Pgf ..> Defines a paragraph format (see “Pgf statement” on page 58)
<Pgf ..> Additional statements as needed
> End of Pgf Cat al 0g statement
Usage

If you don’t include a Pgf Cat al og statement, the MIF interpreter uses the paragraph formats defined in NewTem
pl at e. (For information on defaults specified in templates, see page 3.) If you include Pgf Cat al og, paragraph
formats in the MIF file replace default formats. The MIF interpreter does not add your paragraph format to the
default Paragraph Catalog, although it provides default values for unspecified properties in a paragraph format (see
“Creating and applying paragraph formats” on page 12).

Pgf statement
The Pgf statement defines a paragraph format. Pgf statements can appear in many statements; the statement

descriptions show where Pgf can be used.

The Pgf statement contains substatements that set the properties of a paragraph format. Most of these properties
correspond to those in the Paragraph Designer. Properties can appear in any order within a Pgf statement, with the
following exception: the Pgf NuniTabs statement must appear before any TabSt op statements.

Syntax

Basic properties

<Pgf Begin paragraph format

<Pgf Tag tagstring> Paragraph tag name

Online manual

ADOBE FRAMEMAKER 7.0 |59

MIF Document Statements

<Pgf UseNext Tag bool ean>

Turns on following paragraph tag feature

<Pgf Next Tag tagstring>

Tag name of following paragraph

<Pgf FI ndent di mensi on>

First line left margin, measured from left side of current text column

<Pgf FI ndent Rel ati ve bool ean>

Used for structured documents only

<Pgf FI ndent Of f set di nensi on>

Used for structured documents only

<Pgf LI ndent di nensi on>

Left margin, measured from left side of current text column

<Pgf Rl ndent di nensi on>

Right margin, measured from right side of current text column

<Pgf Al i gnrent keywor d>

Alignment within the text column

keywor d can be one of:
Left Ri ght

Left

Cent er

Ri ght

<Pgf SpBef or e di nmensi on>

Space above paragraph

<Pgf SpAfter di nensi on>

Space below paragraph

<Pgf Li neSpaci ng keyword>

Amount of space between lines in paragraph measured from baseline
to baseline

keywor d can be one of:
Fi xed (default font size)
Proporti onal (largest fontin line)

<Pgf Leadi ng di nensi on>

Space below each line in a paragraph

<Pgf Numrabs i nt eger >

Number of tabs in a paragraph

The statement is not required for input files; the MIF interpreter calcu-
lates the number of tabs. If it does appear, it must appear before any
TabSt op statements; otherwise, the MIF interpreter ignores the tab
settings.

<TabSt op

Begin definition of tab stop; the following property statements can
appear in any order, but must appear within a TabSt op statement

<TSX di nensi on>

Horizontal position of tab stop

<TSType keyword>

Tab stop alignment

keywor d can be one of:
Left

Center

Ri ght

Deci mal

<TSLeader Str string>

Tab stop leader string (for example,.")

<TSDeci nal Char i nteger>

Align decimal tab around a character by ASCII value; in UNIX versions,
type MmN asci i ina UNIX window for a list of characters and their
corresponding ASClII values

>

End of TabSt op statement

<TabSt op..?

Additional statements as needed

Online manual

ADOBE FRAMEMAKER 7.0 |60
MIF Document Statements

Default font properties

<Pgf Font ..>

Default font (see page 63)

Pagination properties

<Pgf Pl acenment keywor d>

Vertical placement of paragraph in text column

keywor d can be one of:
Anywher e

Col umTop
PageTop

LPageTop
RPageTop

<Pgf Pl acenent St yl e keywor d>

Placement of side heads, run-in heads, and paragraphs that straddle
text columns

keywor d can be one of:

Nor mal

Runl n

Si deheadTop

Si deheadFi r st Basel i ne
Si deheadLast Basel i ne
Straddl e

St r addl eNor mal Onl 'y

See page 62

<Pgf Runl nDef aul t Punct string>

Default punctuation for run-in heads

<Pgf Wt hPrev bool ean>

Yes keeps paragraph with previous paragraph

<Pgf W t hNext bool ean>

Yes keeps paragraph with next paragraph

<Pgf Bl ockSi ze i nteger>

Widow/orphan lines

Numbering properties

<Pgf Aut oNum bool ean>

Yes turns on autonumbering

<Pgf NunFor mat string>

Autonumber formatting string

<Pgf Nurmber Font tagstring>

Tag from Character Catalog

<Pgf NumAt End bool ean>

Yes places number at end of line, instead of beginning

Advanced properties

<Pgf Hyphenat e bool ean>

Yes turns on automatic hyphenation

<HyphenMaxLi nes i nt eger >

Maximum number of consecutive lines that can end in a hyphen

<HyphenM nPrefix integer>

Minimum number of letters that must precede hyphen

<HyphenM nSuf fi x integer>

Minimum number of letters that must follow a hyphen

<HyphenM nWord i nt eger>

Minimum length of a hyphenated word

<Pgf Let t er Space bool ean>

Spread characters to fill line

<Pgf M nWor dSpace i nt eger >

Minimum word spacing (as a percentage of a standard space in the
paragraph’s default font)

<Pgf Opt Wr dSpace i nt eger >

Optimum word spacing (as a percentage of a standard space in the
paragraph’s default font)

Online manual

ADOBE FRAMEMAKER 7.0 (61
MIF Document Statements

<Pgf MaxWor dSpace i nt eger >

Maximum word spacing (as a percentage of a standard space in the
paragraph’s default font)

<Pgf Language keywor d>

Language to use for spelling and hyphenation. Note that FrameMaker
write this statement so MIF files can be opened in older versions of
FrameMaker. However, the language for a paragraph format or charac-
ter format is now properly specified in the Pgf Font and Font state-
ments (see page 63)

keywor d can be one of:
NoLanguage
USEngl i sh
UKENngl i sh

Ger man

Swi ssGer man
French

Canadi anFrench
Spani sh

Cat al an

Italian

Por t uguese
Brazilian

Dani sh

Dut ch

Nor wegi an
Nynor sk

Fi nni sh

Swedi sh

Japanese

Tradi ti onal Chi nese
Si npli fi edChi nese
Kor ean

<Pgf TopSepar at or string>

Name of reference frame (from reference page) to put above paragraph

<Pgf TopSepAt | ndent bool ean>

Used for structured documents only

<Pgf TopSepOf f set di nensi on>

Used for structured documents only

<Pgf Bot Separ at or string>

Name of reference frame (from reference page) to put below paragraph

<Pgf Bot SepAt | ndent bool ean>

Used for structured documents only

<Pgf Bot SepOf f set di nensi on>

Used for structured documents only

Table cell properties

<Pgf Cel | Al'i gnrment keywor d>

Vertical alignment for first paragraph in a cell

keywor d can be one of:
Top

M ddl e

Bott om

<Pgf Cel | Margins L T R B>

Cell margins for first paragraph in a cell

<Pgf Cel | LMar gi nFi xed bool ean>

Yes means left cell margin is added to Thl Cel | Mar gi ns;No
means left cell margin overrides Thl Cel | Mar gi ns

<Pgf Cel | TMar gi nFi xed bool ean>

Yes means top cell margin is added to Thl Cel | Mar gi ns;No
means top cell margin overrides Tbl Cel | Mar gi ns

<Pgf Cel | Rvar gi nFi xed bool ean>

Yes means right cell margin is added to Thl Cel | Mar gi ns;No
means right cell margin overrides Thl Cel | Mar gi ns

Online manual

ADOBE FRAMEMAKER 7.0
MIF Document Statements

<Pgf Cel | BMar gi nFi xed bool ean> Yes means bottom cell margin is added to Tbl Cel | Mar gi ns; No
means width of bottom cell margin overrides Thl Cel | Mar gi ns

Miscellaneous properties

<Pgf Locked bool ean> Yes means the paragraph is part of a text inset that obtains its format-
ting properties from the source document. See page 62

<Pgf Acr obat Level integer> Level at which the paragraph is shown in an outline of Acrobat Book-
marks; 0 indicates that the paragraph does not appear as a bookmark

Usage

Within a Pgf Cat al og statement, the Pgf Tag statement assigns a tag to a paragraph format. To apply a paragraph
format from the Paragraph Catalog to the current paragraph, use the Pgf Tag statement in a Par aLi ne statement.

If the Pgf Tag statement within a text flow does not match a format in the Paragraph Catalog, then the Pgf statement
makes changes to the current paragraph format. That is, a Pgf statement after Pgf Tag specifies how the paragraph
differs from the format in the catalog.

If a document has side heads, indents and tabs are measured from the text column, not the side head. In a table cell,
tab and indent settings are measured from the cell margins, not the cell edges.

Usage of some aspects of the Pgf statement is described in the following sections.

Paragraph placement across text columns and side heads

The Pgf Pl acement St yl e statement specifies the placement of a paragraph across text columns and side heads in a
text frame:

« If a paragraph spans across all columns and side heads, the Pgf Pl acenent St yl e statement is set to St r add| e.

+ If a paragraph spans across all columns, but not across the side heads in a text frame, the Pgf Pl acenent Styl e
statement is set to St r add| eNor nal .

Locked paragraphs and text insets

The Pgf Locked statement does not correspond to any setting in the Paragraph Designer. The statement is used for
text insets that retain formatting information from the source document.

If the <Pgf Locked Yes> statement appears in a specific paragraph, that paragraph is part of a text inset that retains
formatting information from the source document. The paragraph is not affected by global formatting performed
on the document.

If the <Pgf Locked No> statement appears in a specific paragraph, that paragraph is not part of a text inset, or is part
of a text inset that reads formatting information from the current document. The paragraph is affected by global
formatting performed on the document.

For more information about text insets, see “Text insets (text imported by reference)” on page 127.

Character formats

A character format is defined by a Pgf Font or a Font statement. Character formats can be defined locally or they
can be stored in the Character Catalog, which is defined by a Font Cat al og statement.

62

Online manual

FontCatalog statement

The Font Cat al og statement defines the contents of the Character Catalog. A document can have only one
Font Cat al og statement, which must appear at the top level in the order given in “MIF file layout” on page 52.

ADOBE FRAMEMAKER 7.0 (63
MIF Document Statements

Syntax
<FontCatalog
 Defines a character format (see “PgfFont and Font statements,” next)
 Additional statements as needed
> End of Font Cat al og statement

PgfFont and Font statements

The Pgf Font and Font statements both define character formats. The Pgf Font statement must appear in a Pgf
statement. The Font statement must appear in a Font Cat al og, Par a, or Text Li ne statement.

New statements have been added to the PgfFont and Font statements to express combined fonts in FrameMaker
documents. For more information, see “Combined Fonts” on page 199.

Syntax

<PgfFont|Font

<FTag tagstring>

Character format tag name

Font name

<FFam |y string>

Name of font family

<FAngl e string>

Name of angle, such as bl i que

<FWei ght string>

Name of weight, such as Bol d

<FVar string>

Name of variation, such as Nar r ow

<FPost Scri pt Nane string>

Name of font when sent to PostScript printer (see “Font name” on page 66)

<FPl at f or mMNan®e string>

Platform-specific font name, only read by Macintosh and Windows versions
(see page 67)

Online manual

ADOBE FRAMEMAKER 7.0 |64
MIF Document Statements

Font language

<FLanguage keyword>

Language to use for spelling and hyphenation

keywor d can be one of:
NoLanguage
USEngl i sh
UKENngl i sh

Ger man

Swi ssGer man
French

Canadi anFrench
Spani sh

Cat al an

Italian

Por t uguese
Brazilian

Dani sh

Dut ch

Nor wegi an

Nynor sk

Fi nni sh

Swedi sh

Japanese

Tradi ti onal Chi nese
Si mpl i fi edChi nese
Kor ean

Font encoding

<FEncodi ng keywor d>

Specifies the encoding for this font. This is to specify the encoding for a dou-
ble-byte font. If not present, the default is Roman.

keywor d can be one of:
Fr ameRoman

JI SX0208. ShiftJI'S
Bl G5

GB2312- 80. EUC
KSC5601- 1992

Font size, color, and width

<FSi ze di nensi on>

Size, in points only (or in Q on a Japanese system)

<FCol or tagstring>

Font color (see “ColorCatalog statement”on page 78)

<FSepar ati on integer>

Font color; no longer used, but written out by FrameMaker for backward-com-
patibility (see “Color statements” on page 244)

<FStretch percent>

The amount to stretch or compress the font, where 100% means no change

Font style

<FUnder | i ni ng keywor d>

Turns on underlining and specifies underlining style

keywor d can be one of:
FNoUnder I i ni ng
FSi ngl e

FDoubl e

FNuneri c

<FOverl i ne bool ean>

Turns on overline style

<FStri ke bool ean>

Turns on strikethrough style

Online manual

ADOBE FRAMEMAKER 7.0
MIF Document Statements

<FChangeBar bool ean>

Turns on the change bar

<FPosi ti on keyword>

Specifies subscript and superscript characters; font size and position relative
to baseline determined by Docunent substatements (see page 88)

keywor d can be one of:
FNor mal

FSuper scri pt
FSubscri pt

<FQutli ne bool ean>

Turns on outline style (Macintosh version only)

<FShadow bool ean>

Turns on shadow style (Macintosh version only

<FPai r Ker n bool ean>

Turns on pair kerning

<FCase keyword>

Applies capitalization style to string

keywor d can be one of:
FAsTyped

FSnmal | Caps

FLower case

FUpper case

Kerning information

<FDX percent >

Horizontal kern value for manual kerning expressed as percentage of an em;
positive value moves characters right and negative value moves characters
left

<FDY percent>

Vertical kern value for manual kerning expressed as percentage of an em; pos-
itive value moves characters down and negative value moves characters up

<FDW per cent >

Spread value for space between characters expressed as percentage of an em;
positive value increases the space and negative value decreases the space

<FTsune bool ean>

Yes turns on Tsume (variable width rendering) for Asian characters

Filter statements

<FPl ai n bool ean> Used only by filters
<FBol d bool ean> Used only by filters
<Fltalic bool ean> Used only by filters

Miscellaneous information

<FLocked bool ean>

Yes means the font is part of a text inset that obtains its formatting properties
from the source document

End of Pgf Font or Font statement

Usage

Use Pgf Font within a Pgf statement to override the default font for the paragraph. Use Font within a Font Cat al og
statement to define a font or in a Par a statement to override the default character format. Substatements in the Font
and Pgf Font statements are optional. Like the Pgf substatements, Font substatements reset the current font.

When the MIF interpreter reads a Font statement, it continues using the character format properties until it either

previous state by providing an empty FTag statement. A Font statement that does not supply all property substate-

reads another Font statement or reads the end of the Par a statement. You can set the character format back to its

ments inherits the current font state for those properties not supplied.

65

Online manual

ADOBE FRAMEMAKER 7.0
MIF Document Statements

For more information about creating and applying character formats in a MIF file, see “Creating and applying
character formats” on page 21. For more information about character formats in general, see your user’s manual.

Usage of some aspects of the Pgf Font and Font statements is described in the following sections.

Locked fonts and text insets

The FLocked statement does not correspond to any setting in the Character Designer. The statement is used for text
insets that retain formatting information from the source document.

If the <FLocked Yes> statement appears in a specific character format, that character format is part of a text inset
that retains formatting information from the source document. The character format is not affected by global
formatting performed on the document.

If the <FLocked No> statement appears in a specific character format, either that character format is not part of a
text inset, or that character format is part of a text inset that reads formatting information from the current
document. The character format is affected by global formatting performed on the document.

For more information about text insets, see “Text insets (text imported by reference)” on page 127.

Font name

When a Pgf Font or Font statement includes all of the family, angle, weight, and variation properties, FrameMaker
identifies the font in one or more of the following ways:

* The statement FPI at f or nName specifies a font name that uniquely identifies the font on a specific platform.

+ The statements FFami | y, FAngl e, FWei ght , and FVar specify how FrameMaker stores font information inter-
nally.

* The statement FPost Scr i pt Name specifies the name given to a font when it is sent to a PostScript printer (specif-
ically, the name that would be passed to the PostScript Fi ndFont operator before any font coordination opera-
tions). The PostScript name is unique for all PostScript fonts, but may not be available for fonts that have no
PostScript version.

For complete font specifications, FrameMaker always writes the FFani | y, FAngl e, F\i ght , Fvar , and FPost -
Scri pt Name statements. In addition, Macintosh and Windows versions of FrameMaker also write the FPI at -
f or mNane statement. A UNIX version of FrameMaker ignores FPI at f or nNane.

When FrameMaker reads a MIF file that includes more than one way of identifying a font, it checks the font name
in the following order:

1 Platform name
2 Combination of family, angle, weight, and variation properties
3 PostScript name

If you are writing filters to generate MIF, you do not need to use all three methods. You should always specify the
PostScript name, if it is available. You should use the platform name only if your filter will be run on a specific
platform. A filter running on a specific platform can easily find and write out the platform name, but the name
cannot be used on other platforms.

Font encoding

The <FEncodi ng> statement specifies which encoding to use for a font. The default is Roman, or standard 7-bit
encoding. If this statement is not included for a font, 7-bit encoding is assumed.

66

Online manual

ADOBE FRAMEMAKER 7.0 (67
MIF Document Statements

This statement takes precedence over all other font attributes. For example, if the document includes a font with
<FEncodi ng " JI SX0208. Shi ftJI S >, but that font family is not available on the user’s system, then the text will
appear in some other font on the system that uses Japanese encoding. If there is no Japanese encoded font on the

system, the text appears in Roman encoding and the user will see garbled characters.

FPlatformName statement

The <FPI at f or mName st ri ng> statement provides a platform-specific ASCII string name that uniquely identifies

a font for a particular platform. The st ri ng value consists of several fields separated by a period.

Macintosh: The Macintosh platform name has the following syntax:

<FPlatformName M.Font Nare.St yl eFl ags>

M Platform designator

Font Name Macintosh Resource Manager font name (for more information, see your Macintosh documenta-
tion)

Styl eFl ags Macintosh font styles; use one or more of the following flags:

B (Bold)

| (Italic)
C(Condensed)
E (Extended)

P (Plain, use if no other flags are set)

You cannot use the Cand E flags for the same font. For Underline, Outline, and Shadow styles, use
the MIF statements FUnder | i ni ng, FQut | i ne,and FShadow (described on page 64 and
page 65).

The following statements are valid representations of the Macintosh font Helvetica Narrow Bold Oblique:

<FPlatformName M.Helvetica.BIC>

<FPlatformName M.B Helvetica Bold.IC>

<FPlatformName M.NI Helvetica Narrow Oblique.B>
<FPlatformName M.NBI Helvetica Narrow BoldObl.P>
Windows: The Windows platform name has the following syntax:

<FPlatformName W.FaceNane.l tal i cFl ag. Wi ght. Vari ati on>

W Platform designator
FaceNanme Windows face name (for more information, see your Windows documentation)
ItalicFlag Whether font is italic; use one of the following flags:
I (Italic)
R (Regular)
Wi ght Weight classification, for example 400 (regular) or 700 (bold)
Variation Optional variation, for example Nar r ow

Online manual

ADOBE FRAMEMAKER 7.0
MIF Document Statements

The following statements are valid representations of the Windows font Helvetica Narrow Bold Oblique:

<FPlatformName W.Helvetica-Narrow.1.700>
<FPlatformName W.Helvetica.l.700.Narrow>

Tables

Table formats are defined by a Tbl For mat statement. Table formats can be locally defined or they can be stored in a
Table Catalog, which is defined by a Tbl Cat al og statement. The ruling styles used in a table are defined in a Rul i ng-
Cat al og statement.

In a MIF file, all document tables are contained in one Tbl s statement. Each table instance is contained in a Thl
statement. The ATbl statement specifies where each table instance appears in the text flow.

TbiCatalog statement

The Thl Cat al og statement defines the Table Catalog. A document can have only one Tbl Cat al og statement, which
must appear at the top level in the order given in “MIF file layout” on page 52.

Syntax
<TblCatalog
<Tbl For mat ..» Defines a table format (see “ThIFormat statement,” next)
<Tbl For mat ..> Additional statements as needed
> End of Tbl Cat al 0g statement
TblFormat statement

The Tbl For mat statement defines the format of a table. A Thl For mat statement must appear in a Thl Cat al og or in
aTbl statement. A Thl For mat statement contains property substatements that define a table’s properties. Table
property statements can appear in any order.

Syntax
Basic properties
<TblFormat
<Tbl Tag tagstring> Table format tag name
<Tbl LI ndent di nensi on> Leftindent for the table relative to the table’s containing text column; has
no effect on right-aligned tables
<Tbl Rl ndent di nensi on> Right indent for the table relative to the table’s containing text column;
has no effect on left-aligned tables
<Tbl SpBef or e di nensi on> Space above table
<Tbl SpAfter dinension> Space below table

68

Online manual

ADOBE FRAMEMAKER 7.0 |69
MIF Document Statements

<Tbl Al i gnment keywor d>

Horizontal alignment within text column or text frame

keywor d can be one of:
Left

Cent er

Ri ght

I nsi de

Qut si de

See page 72

<Thbl Pl acenent keyword>

Vertical placement of table within text column

keywor d can be one of:
Anywher e

Fl oat

Col umTop
PageTop

LPageTop
RPageTop

<Tbl Bl ockSi ze i nteger>

Widow/orphan rows for body rows

<Tbl Cel | Margins L T R B>

Left, top, right, bottom default cell margins

<Tbl Ti t| ePl acenment keyword>

Table title placement

keywor d can be one of:
| nHeader

I nFoot er

None

<Tbl Titl ePgf1

Paragraph format of title for a new table created with the table format

<Pgf Tag tagstring>

Applies format from Paragraph Catalog

<Pgf ..>

Overrides Paragraph Catalog format as needed (see page 58)

>

End of Thl Ti t | ePgf 1 statement

<Tbl Titl eGap di nensi on>

Gap between title and top or bottom row

<Tbl NumByCol unm bool ean>

Autonumber paragraphs in cells; Yes numbers down each column and
No numbers across each row

Ruling properties

<Tbl Col umRul i ng tagstring>

Ruling style for most columns; value must match a ruling style name
specified in the Rul i ngCat al og statement

<Tbl XCol utmNum i nt eger >

Number of column with a right side that uses the Tbl XCol urmRul -
i ng statement

<Tbl XCol umRul i ng tagstring>

Ruling style for the right side of column Tbl XCol unmNum

<Tbl BodyRowRul i ng tagstring>

Default ruling style for most body rows

<Tbl XRowRul i ng tagstring>

Exception ruling style for every nt h body row

<Tbl Rul i ngPeri od i nteger>

Number of body rows after which Thl XRowRul i ng should appear

<Tbl HFRowRul i ng tagstring>

Ruling style between rows in the heading and footing

<Tbl Separ at or Rul i ng tagstring>

Ruling style for rule between the last heading row and first body row,and
also between the last body row and the first footing row

Online manual

ADOBE FRAMEMAKER 7.0 | 70

MIF Document Statements

<Tbl LRul i ng tagstring>

Left outside table ruling style

<Tbl BRul i ng tagstring>

Bottom outside table ruling style

<Tbl RRul i ng tagstring>

Right outside table ruling style

<Tbl TRul i ng tagstring>

Top outside table ruling style

<Thbl Last BRul i ng bool ean>

Yes means draw bottom rule on the last sheet only; No means draw rule
on the bottom of every sheet

Shading properties

<Tbl HFFi | | integer>

Default fill pattern for table heading and footing (see page 103)

<Tbl HFCol or tagstring>

Default color for table heading and footing (see page 78)

<Tbl HFSepar ati on i nteger>

Default color for table heading and footing; no longer used, but written
out by FrameMaker for backward-compatibility (see “Color statements”
on page 244)

<Tbl BodyFi || integer>

Default fill pattern for body cells (see page 103)

<Tbl BodyCol or tagstring>

Default color for body cells (see page 78)

<Tbl BodySepar ati on integer>

Default color for body cells; no longer used, but written out by
FrameMaker for backward-compatibility (see “Color statements” on
page 244)

<Thl ShadeByCol urm bool ean>

Yes specifies column shading; No specifies body row shading

<Tbl ShadePeri od i nt eger >

Number of consecutive columns/rows that use Tbl BodyFi | |

<Tbl XFi | | integer>

Exception fill pattern for columns or body rows (see page 103)

<Thl XCol or tagstring>

Exception color for columns or body rows (see page 78)

<Tbl XSepar ati on integer>

Exception color for columns or body rows; no longer used, but written
out by FrameMaker for backward-compatibility (see “Color statements”
on page 244)

<Tbl Al t ShadePeri od integer>

Number of consecutive columns/rows that use Thl XFi | | ;exception
columns/rows alternate with default body columns/rows to form a
repeating pattern

Column properties

<Tbl W dt h di nensi on>

Not generated by FrameMaker, but can be used by filters to determine
table width

<Tbl Col um

Each table must have at least one Thl Col umm statement;a column
without a statement uses the format of the rightmost column

<Tbl Col uTmNum i nt eger >

Column number; columns are numbered from left to right starting at O

<Tbl Col umW dt h di mensi on>

Width of column. See page 76

<Tbl Col umW dt hP i nt eger >

Not generated by FrameMaker, but a temporary column width when fil-
tering proportionally-spaced tables from another application; converted
to a fixed width when read in (see page 76)

Online manual

ADOBE FRAMEMAKER 7.0 (71
MIF Document Statements

<Tbl Col umW dt hA W W&

Not generated by FrameMaker, but a width based on a cell width, for fil-
ters only; converted into a fixed width when read in.First value is mini-
mum width; second value is maximum width.Values limit the range of a
computed column width, and are usually set to a wide range (see

page 76).

<Tbl Col umH

Default paragraph format for the column’s heading cells in new tables

<Pgf Tag tagstring>

Applies format from Paragraph Catalog

<Pgf...>

Overrides Paragraph Catalog format as needed (see page 58)

>

End of Thl Col utmmH statement

<Tbl Col utmBody

Default paragraph format for the column’s body cells in new tables

<Pgf Tag tagstring>

Applies format from Paragraph Catalog

<Pgf ...> Overrides Paragraph Catalog format as needed (see page 58)
> End of Tbl Col utmBody statement
<Tbl Col umF Default paragraph format for the column’s footing cells in new tables

<Pgf Tag tagstring>

Applies format from Paragraph Catalog

<Pgf ...>

Overrides Paragraph Catalog format as needed (see page 58)

>

End of Tbl Col ummpF statement

>

End of Thl Col um statement

<Tbl Col um..>

More Tbl Col umm statements as needed, one per column

New table properties

<Tbl I ni t NunCol ums i nt eger >

Number of columns for new table

<Tbl I ni t NumHRows i nt eger >

Number of heading rows for new table

<Tbl I ni t NumBodyRows i nt eger >

Number of body rows for new tables

<Tbl I ni t N\unFRows i nt eger >

Number of footing rows for new tables

Miscellaneous properties

<Tbl Locked bool ean>

Yes means the table is part of a text inset that obtains its formatting
properties from the source document

End of Thl For mat statement

Usage

The basic properties, ruling properties, and shading properties correspond to settings in the Table Designer. The
tagstri ng value specified in any ruling substatement (such as Tbl Col utmRul i ng) must match a ruling tag defined

in the Rul i ngCat al og statement (see page 77). The t agst ri ng value specified in any color substatement (such as

Thl BodyCol or) must match a color tag defined in the Col or Cat al og statement (see page 78).

Usage of some of the aspects of the Tbl For mat statement is described in the following sections.

Online manual

ADOBE FRAMEMAKER 7.0 (72
MIF Document Statements

Alignment of tables

The horizontal alignment of a table within a text column or text frame is specified by the Tbl Al i gnment statement:

« If the table is aligned with the left, center, or right side of a text column or text frame, the Tbl Al i gnrent statement
isset to Left, Cent er, or Ri ght, respectively.

« If the table is aligned with the closer edge or farther edge of a text frame (closer or farther relative to the binding
of the book), the Tbl Al i gnment statement is set to | nsi de or Qut si de, respectively.

Locked tables and text insets

The Tbl Locked statement does not correspond to any setting in the Table Designer. The statement is for text insets
that retain formatting information from the source document.

If the <Tbl Locked Yes> statement appears in a specific table, that table is part of a text inset that retains formatting
information from the source document. The table is not affected by global formatting performed on the document.

If the <Thl Locked No> statement appears in a specific table, that table is not part of a text inset or is part of a text
inset that reads formatting information from the current document. The table is affected by global formatting
performed on the document.

For details about text insets, see “Text insets (text imported by reference)” on page 127.

Thls statement

The Thl s statement lists the contents of each table in the document. A document can have only one Thl s statement,
which must appear at the top level in the order given in “MIF file layout” on page 52.

Syntax
<Tbls Beginning of tables list
<Tbl .> Defines a table instance (see “Tbl statement,” next)
<Thl .> Additional statements as needed
> End of Thl s statement

Thl statement

The Thl statement contains the contents of a table instance. It must appear in a Thl s statement.

Each Thl statement is tied to a location in a text flow by the ID number in a Tbl | Dstatement. Each Tbl statement
has an associated AThl statement within a Par aLi ne statement that inserts the table in the flow. The Tbl statement
must appear before the AThl statement that refers to it. Each Tbl statement can have only one associated ATbl
statement, and vice versa. For more information about the ATb| statement, see “ParaLine statement” on page 121.

Syntax
<Tbl
<Tbl'I D | D> Table ID number
<Tbl Tag tagstring> Applies format from Table Catalog

Online manual

ADOBE FRAMEMAKER 7.0 (73
MIF Document Statements

<Tbl For mat ..>

Overrides Table Catalog format as needed (see page 68)

Table columns

<Tbl NumCol ums i nt eger >

Number of columns in the table

<Tbl Col utmW dt h di mensi on>

Width of first column

<Tbl Col utmW dt h di mensi on>

Width of second column

Width of remaining columns as needed

<Equal i zeW dt hs

Makes specified columns the same width as the widest column (for filters

only, see page 76)

<Tbl Col utmNum i nt eger >

First column

<Tbl Col ummNum i nt eger >

More columns as needed

> End of EQual i zeW dt hs statement
Table title
<TblTitle Begin definition of table title

<Tbl Ti t | eCont ent

Table title’s content, represented in one or more Par a statements

<Not es..> Footnotes for table title (see page 120)
<Par a..> Title text (see page 121)
<Para..> Additional statements as needed
> End of Thl Ti t | eCont ent statement

> End of Thl Ti t | e statement

Table rows

<Thbl H Table heading rows; omit if no table headings
<Row..> See “"Row statement,” next
<Row..> Additional statements as needed

> End of Thl Hstatement

<Tbl Body Table body rows
<Row..> See “Row statement,” next
<Row..> Additional statements as needed

> End of Thl Body statement

<Tbl F Table footing rows; omit if no table footing
<Row..> See “Row statement,” next

Online manual

ADOBE FRAMEMAKER 7.0 |74

MIF Document Statements

<Row..> Additional statements as needed
> End of Thl F statement
> End of Thl statement
Usage

The table column statements specify the actual width of the table instance columns. They override the column
widths specified in the Tbl For mat statement.

Row statement

A Rowstatement contains a list of cells. It also includes row properties as needed. The statement must appear in a Tbl

statement.

Syntax

<Row

<Condi tional ..>

Specifies conditional row (row is unconditional if the statement is omitted)

<RowW t hNext bool ean>

Keep with next body row

<RowW t hPr ev bool ean>

Keep with previous body row

<RowM nHei ght di mensi on>

Minimum row height

<RowMaxHei ght di mensi on>

Maximum row height

<RowHei ght di mensi on>

Row height

<RowP| acenent keywor d>

Row placement

keywor d can be one of:
Anywher e

Col umTop
LPageTop
RPageTop

PageTop

<Cell .>

Each Rowstatement contains one Cel | statement for each column (see “Cell
statement,” next)

<Cell .>

Additional statements as needed

End of Rowstatement

Usage

Each Rowstatement contains a Cel | statement for each column in the table, even if a straddle hides a cell. Extra Cel |

statements are ignored; too few Cel | statements result in empty cells in the rightmost columns of the row.

When you rotate a cell to a vertical orientation, the width of unwrapped text affects the height of the row. You can
use RowVaxHei ght and RowM nHei ght to protect a row’s height from extremes caused by rotating cells containing
multiline paragraphs, or to enforce a uniform height for the rows.

Online manual

ADOBE FRAMEMAKER 7.0 (75
MIF Document Statements

FrameMaker writes out the RowHei ght statement for use by other programs. It is not used by the MIF interpreter.
Even if the statement is present, the MIF interpreter recalculates the height of each row based on the row contents
and the RowM nHei ght and RowivaxHei ght statements.

Cell statement

A Cel | statement specifies a cell’s contents. It also includes format, straddle, and rotation information as needed.
The statement must appear in a Row statement.

Syntax
<Cell
<CellFill integer> Fill pattern for cell, 0-15 (see page 103)
<Cel | Col or tagstring> Color for cell (see “ColorCatalog statement”on page 78)
<Cel | Separ ati on integer> Color for cell; no longer used, but written out by FrameMaker for
backward-compatibility (see “Color statements” on page 244)
<Cel | LRul i ng tagstring> Left edge ruling style (from Ruling Catalog)
<Cel | BRul i ng tagstring> Bottom edge ruling style
<Cel | RRul i ng tagstring> Right edge ruling style
<Cel | TRul'i ng tagstring> Top edge ruling style
<Cel | Col umms i nt eger > Number of columns in a straddle cell
<Cel | Rows i nt eger > Number of rows in a straddle cell

<Cel | Af f ect sCol unmW dt hA bool ean> Yes restricts column width to cell width

<Cel | Angl e degrees> Angle of rotation in degrees: 0,90, 180,0r 270

<Cel | Cont ent Cell’s content
<Not es..> Footnotes for cell (see page 120)
<Para..> Cell's content, represented in one or more Par a statements (see

page 121)

<Par a..> Additional statements as needed

> End of Cel | Cont ent statement

> End of Cel | statement
Usage

You can use the Rotate command on the Graphics menu to change the Cel | Angl e, but it does not affect the location
of cell margins. Cel | Angl e affects only the orientation and alignment of the text flow. When Cel | Angl e is 90 or 270
degrees, use Pgf Cel | Al i gnnent to move vertically oriented text closer to or farther from a column edge. For infor-
mation about aligning text in a cell, see Pgf Cel | Al i gnnent on page 61.

MIF uses Cel | Af f ect sCol utmW dt hA only with the Thl Col urmW dt hA statement. The MIF default for computing
a cell’s width is Tbl Col unmW dt hA. However, if any cells in the column have <Cel | Af f ect sCol urmW dt hA Yes>,
then only those cells affect the computed column width.

Online manual

ADOBE FRAMEMAKER 7.0 (76
MIF Document Statements

Usage of MIF statements to calculate the width of a column is described in the following sections.

Determining table width

When FrameMaker writes MIF files, it uses Tbl Col umW dt h in the Thl statement to specify column width.
However, filters that generate MIF files can use other statements to determine the table width.

This method Uses these statements To do this

Fixed width TblColumnWidth Give a fixed value for column’s width (see page 70)

Shrink-wrap TblColumnWidthA Fit a column within minimum and maximum values (see page 71)
Restricted Tbl Col utmW dt hA and Cel | Af - Use particular cells to determine column width (see page 75)

f ect sCol umW dt hA

Proportional TblColumnWidthP Create a temporary value for a column width when filtering pro-
portional-width columns from another application; the MIF inter-
preter converts the value to a fixed width (see page 70 and “Calcu-
lating proportional-width columns,” next)

Equalized Equal i zeW dt hs and Tbl Col - Apply the width of the widest column to specified columns in the

urmNum same table (see page 73)

The table example in “Creating an entire table” on page 224 shows several ways to determine column width.

Calculating proportional-width columns

MIF uses this formula to calculate the width of proportional-width columns:

PT’;ml x PWidth

The arguments have the following values:

n Value of Tbl Col umW dt hP

PTotal Sum of the values for all Thl Col urmW dt hP statements in the table

PWidth Available space for all proportional columns (Tbl W dt h - the sum of fixed-width columns)

For example, suppose you want a four-column table to be 7 inches wide, but only the last three columns to have
proportional width.

* The columns have the following widths:

Column 1 has a fixed-width value of 1": <Tbl Col umwW dth 1">

Column 2 has a proportional value of 2: <Tbl Col umWw dt hP 2>

Column 3 has a proportional value of 1: <Tbl Col utmW dt hP 1>

Column 4 has a proportional value of 1: <Tbl Col utmW dt hP 1>

* Available width for proportional columns (PW dt h) is 7" — 1" or 6".

 Sum of all proportional values (PTotal) is2+ 1+ 1 or 4.

» Width for Column 2 is (2/PTot al) x PW dt h = (2/4) x 6" or 3".

» Width for Column 3 or Column 4 is (1/PTotal) x PWdth = (1/4) x 6" or 1.5".

Online manual

ADOBE FRAMEMAKER 7.0 (77
MIF Document Statements

RulingCatalog statement

The Rul i ngCat al og statement defines the contents of the Ruling Catalog, which describes ruling styles for tables.
A document can have only one Rul i ngCat al og statement, which must appear at the top level in the order given in
“MIF file layout” on page 52.

Syntax

<RulingCatalog
<Ruli ng.> Defines ruling style (see “Ruling statement” on page 77)
<Rul'i ng.> Additional statements as needed

> End of Rul i ngCat al og statement

Ruling statement

The Rul i ng statement defines the ruling styles used in table formats. It must appear within the Rul i ngCat al og
statement.

Syntax

<Ruling
<Rul i ngTag tagstring> Ruling style name; an empty string indicates no ruling style
<Rul i ngPenW dt h di mensi on> Ruling line thickness
<Rul i ngGap di mensi on> Gap between double ruling lines
<Rul i ngCol or tagstring> Color of ruling line (see “ColorCatalog statement” on page 78)
<Rul i ngSepar ati on integer> Color of ruling line; no longer used, but written out by FrameMaker

for backward-compatibility (see “Color statements” on page 244)

<Rul i ngPen i nt eger > Pen pattern O through 7,0r 15 (see page 103)
<Rul i ngLi nes i nteger> 0 (none), 1 (single), or 2 (double) ruling lines

> End of Rul i ng statement

Color

You can assign colors to text and objects in a FrameMaker document. A FrameMaker document has a set of default
colors; you can also define your own colors and store them in the document’s Color Catalog. A FrameMaker
document has three color models you can use to create colors: CMYK, RGB, and HLS. You can also choose inks from
installed color libraries such as PANTONE"®.

In a MIF file, colors are defined by a Col or statement within a Col or Cat al og statement. Regardless of the color
model used to define a new color, colors are stored in a MIF file in CMYK.

You can define a color as a tint of an existing color. Tints are colors that are mixed with white. A tint is expressed by
the percentage of the base color that is printed or displayed. A tint of 100% is equivalent to the pure base color, and
a tint of 0% is equivalent to no color at all.

Online manual

ADOBE FRAMEMAKER 7.0 (78
MIF Document Statements

You can specify overprinting for a color. However, if overprinting is set for a graphic object, the object’s setting takes
precedence. When a graphic object has no overprint statement, the overprint setting for the color is assumed.

You can set up color views to specify which colors are visible in a document. The color views for a document are
specified in the Vi ews statement. The current view for the document is identified in a DCur r ent Vi ew statement.

The color of a FrameMaker document object is expressed in a property statement for that object. In this manual, the
syntax description of a FrameMaker document object that can have a color property includes the appropriate color
property substatement.

ColorCatalog statement

The Col or Cat al og statement defines the contents of the Color Catalog. A document can have only one Col or -
Cat al og statement, which must appear at the top level in the order given in “MIF file layout” on page 52.

Syntax
<ColorCatalog
<Col or ..» Defines a color (see “Color statement,” next)
<Col or ..» Additional statements as needed
> End of Col or Cat al og statement
Color statement

The Col or statement defines a color. It must appear within the Col or Cat al og statement. Note that MIF version 5.5
and later supports multiple color libraries. The Col or Pant oneVal ue statement has been replaced by the Col or Fam
i | yNarre and Col or | nkNane statements.

Syntax
<Color

<Col or Tag tagstring> Color tag name

<Col or Cyan percent age> Percentage of cyan (0-100)

<Col or Magent a percent age> Percentage of magenta (0-100)

<Col or Yel | ow percent age> Percentage of yellow (0-100)

<Col or Bl ack percentage> Percentage of black (0-100)

<Col or Li braryFam | yName string> Color library name

<Col or Li braryl nkName string> Specifies name of the color library pigment. Older versions of MIF
that use Col or Pant oneVal ue can still be read into MIF 5.5
and later.The full ink name must be used.

Online manual

ADOBE FRAMEMAKER 7.0 (79
MIF Document Statements

<Col or Attribute keyword> Identifies a default FrameMaker document color

keywor d can be one of:
Col or |1 sBl ack

Col orl sWiite

Col or | sRed

Col or 1 sGreen

Col or | sBl ue

Col or | sCyan

Col or | sMagent a
Col orl sYel | ow
Col or | sReserved

<Col or Ti nt percent age> 100% indicates solid color;less than 100% indicates a reduced per-
centage of the color
<Col or Ti nt BaseCol or string The name of the color from which the tint is derived. If the base
color does not exist in the document, black will be used.
<Col or Over print bool ean> Yes indicates overprint is set for the color; No indicates knockout.
> End of Col or statement
Usage

In a MIF file, all colors are expressed as a mixture of cyan, magenta, yellow, and black. The Col or Attri bute
statement identifies a default FrameMaker document color; the default colors are all reserved (specified by the

Col or | sReser ved keyword) and cannot be modified or deleted by the user. A reserved default color can have two
Col or At t ri but e statements, for example:

<ColorAttribute ColorIsCyan>
<ColorAttribute ColorIsReserved>
A color tint must be based on an existing color. This has two implications:

* If the base color doesn’t exist in the document, black is used as the base color for the tint.

¢ The color value statements (values for CMYK, color family, and ink name) are ignored when included in a tint
statement. However, FrameMaker writes out color value statements for a tint, even though they will be ignored.
To modify the color values of a tint, modify the color value statements for the base color used by the tint.

Views statement

The Vi ews statement contains the color views for the document. A document can have only one Vi ews statement,
which must appear at the top level in the order given in “MIF file layout” on page 52.

Syntax
<Views
<Vi ew..> Defines a color view (see “View statement,” next)
<Vi ew..> Additional statements as needed
> End of Vi ews statement

Online manual

ADOBE FRAMEMAKER 7.0 |80
MIF Document Statements

View statement

For each color view, the Vi ewstatement specifies which colors will be displayed, which will be displayed as cutouts,
and which will not be displayed at all. The Vi ewstatement must appear in a Vi ews statement.

Syntax

<View
<Vi ewNunber i nt eger> View number (1-6)
<Vi ewCut out tagstring> Name of color to print as cutout separation
<Vi ewCut out ..> Additional statements as needed
<Vi ew nvi si bl e tagstring> Name of color to hide
<Viewl nvisible.> Additional statements as needed

> End of Vi ewstatement

Variables

All variable definitions for a document are contained in a Var i abl eFor mat s statement. Both user-defined and
system-defined variables are defined by a Vari abl eFor mat statement. A Vari abl e statement that refers to the
variable name shows where the variable appears in text (see “ParaLine statement” on page 121).

VariableFormats and VariableFormat statements

The Vari abl eFor mat s statement defines document variables to be used in document text flows. A MIF file can have
only one Vari abl eFor mat s statement, which must appear at the top level in the order given in “MIF file layout” on
page 52.

Each Vari abl eFor mat statement supplies a variable name and its definition. The statement must appear in a
Var i abl eFor mat s statement.

Syntax
<VariableFormats
<Vari abl eFor mat
<Vari abl eNanme tagstring> Name of variable
<Vari abl eDef string> Variable definition
> End of Var i abl eFor mat statement
<Vari abl eFor mat ..> Additional statements as needed
> End of Var i abl eFor mat s statement

Online manual

ADOBE FRAMEMAKER 7.0
MIF Document Statements

Usage

Var i abl eNane contains the name of the variable, used later in the MIF file by Var i abl e to position the variable in
text. Vari abl eDef contains the variable’s definition. A system-defined variable definition consists of a sequence of
building blocks, text, and character formats. A user-defined variable consists of text and character formats only.

The system variables for the current page number and running headers and footers can only appear on a master page
in an untagged text flow. You cannot insert any variables in a tagged text flow on a master page. You can insert
variables anywhere else in a text flow.

For more information about variables and the building blocks they can contain, see your user’s manual or the online
Help system.

Cross-references

A FrameMaker document can contain cross-references that refer to other portions of the document or to other
documents. A cross-reference has a marker that indicates the source (where the cross-reference points) and a format
that determines the text and its formatting in the cross-reference.

All cross-reference formats in a document are contained in one XRef For mat s statement. A cross-reference format
is defined by an XRef For mat statement. Within text, an XRef statement and a Mar ker statement indicate where each
cross-reference appears.

XRefFormats and XRefFormat statements

The XRef For mat s statement defines the formats of cross-references to be used in document text flows. A MIF file
can have only one XRef For mat s statement, which must appear at the top level in the order given in “MIF file layout”
on page 52.

The XRef For mat statement supplies a cross-reference format name and its definition. The statement must appear in
an XRef For mat s statement.

Syntax
<XRefFormats
<XRef For mat
<XRef Nane string> Cross-reference name
<XRef Def string> Cross-reference definition
> End of XRef For mat statement
<XRef For mat ..> More cross-reference definitions as needed
> End of XRef For nat s statement
Usage

XRef Nane supplies the cross-reference format name, which is used later by the XRef statement to apply a format to
the text of the cross-reference. The XRef Def statement supplies the cross-reference format definition, which is a
string that contains text and cross-reference building blocks.

81

Online manual

ADOBE FRAMEMAKER 7.0
MIF Document Statements

For more information about cross-references and their building blocks, see your user’s manual or the online Help
system.

Global document properties

A FrameMaker document has properties that specify the document page size, pagination style, view options, current
user preferences, and other global document information. The user sets these properties by using various
commands, such as the Document command, the View command, the Normal Page Layout command, and others.

In a MIF file, global document properties are specified as substatements in a Docunent statement. If you do not
provide these property statements, the MIF interpreter assumes the properties specified in NewTenpl at e. (For infor-
mation on defaults specified in templates, see page 3.)

The BookConponent statement specifies setup information for files generated from the document. The Di ct i onary
statement contains the user’s list of allowed words for the document.

Document statement

The Docunent statement defines global document properties. A document can have only one Docunent statement,
which must appear at the top level in the order given in “MIF file layout” on page 52.

A Docunent statement does not need any of these property substatements, which can occur in any order. It can also
contain additional substatements describing standard equation formats. (See , “MIF Equation Statements.”)

Document File Info

For version 7.0 and later, FrameMaker stores file information in packets (XMP) of encoded data. This data can be
used by applications that support XMP. In MIF these data packets are expressed in the <DocFileInfo> statement.
This data is generated by FrameMaker in an encoded form, and you should not edit the information. Note that this
information corresponds to the values of fields in the File Info dialog box. It also corresponds to the data in the
<PDFDoc| nf 0> statement. However, unlike <PDFDoc| nf 0>, this XMP data also includes the values of the File Info
dialog box default fields for Cr eat or, Creat i on Dat e, and Met aDat a Dat e.

PDF Document Info

For version 6.0 and later, FrameMaker stores PDF File Info in the document file. FrameMaker automatically supplies
values for Creator, Creation Date and Metadata Date; these Document Info fields do not appear in MIF statements
for PDF Document Info. However, a user can use the File Info dialog box to specify values for Author, Title, Subject,
Keywords, Copyright, Web Statement, Job Reference, and Marked. The values for all these these values appear in PDF
Document Info. A document can also contain arbitrary Document Info fields if they have been entered via an FDK
client or by editing a MIF file. In MIF, each Document Info entry consists of one Key statement and at least one Val ue
statement.

A Key statement contains a string of up to 255 ASCII characters. The Key names a File Info field; in PDF the field
name can be up to 126 characters long. In MIF you represent non-printable characters via #HH, where # identifies a
hexadecimal representation of a character, and HHis the hexadecimal value for the character. For example, use #23
to represent the “#” character. Zero-value hex-codes (#00) are illegal. In PDF, these hexadecimal representations are
interpreted as PDFDocEncoding (see Portable Document Format Reference Manual, Addison-Wesley, ISBN 0-201-
62628-4).

82

Online manual

ADOBE FRAMEMAKER 7.0
MIF Document Statements

Note that a a File Info field name can be up to 126 characters long, and a MIF string can contain up to 255 characters.
Some characters in the key string may be hexadecimal representations, and each hexadecimal representation uses
three ASCII characters. For example, a Key of 126 non-printing characters would require 378 ASCII characters.
However, since a valid MIF string can only have up to 255 ASCII characters, such a Key statement woud be invalid
in MIE

The contents of the File Info field is represented by a series of Val ue statements. Each value statement can contain a
string of up to 255 ASCII characters. In PDF the File Info contents can contain up to 32765 Unicode characters. To
accomodate this number of Unicode characters, FrameMaker generates MIF in the following ways:

* It represents the Document Info contents as a series of Value statements, each one 255 ASCII characters long, or
less.
* It uses special codes to indicate Unicode characters that are outside the standard ASCII range. Mif represents

Unicode characters as &#xHHHH; , where &#x opens the character code, the “; ” character closes the character code,
and HHHH are as many hexadecimal values as are required to represent the character.

Note that each Unicode representation of a character uses up to seven ASCII characters. For example, a string of 255
Unicode characters could require as many as 1785 ASCII charactrers.

For example, The following MIF statements show three possible Document Info fields:

<PDFDocInfo
<Key “Author'>
<Value "Thomas Aquinas'>
<Key ‘Title'>
<Value "That the Soul Never Thinks Without an Image'>
<Key ‘Subject'>
<Value "Modern translation of the views of T. A. concerning cognition; "It is'>
<Value * impossible for our intellect, in its present state of being joined t'>
<Value ‘0 a body capable of receiving impressions, actually to understand...'>
> # end of PDFDoclnfo

Syntax
<Document Document properties
<DNext Uni que | D> Refers to the next object with a <Uni que | D> state-
ment; generated by FrameMaker and should not be used
by filters
Window properties
<DVi ewRect X Y WH> Position and size of document window based on position

and size of the document region within containing win-
dow; DVi ewRect takes precedence over DW ndow
Rect

<DW ndowRect X Y W H> Position and size of document window based on the con-
taining window (including the title bar, etc.)

<DVi ewScal e percentage> Current zoom setting

Column properties

<Dvargins L T R B> Not generated by FrameMaker, but used by filters to spec-
ify text margins; ignored unless DCol umms is specified

83

Online manual

ADOBE FRAMEMAKER 7.0
MIF Document Statements

<DCol ums i nt eger >

Not generated by FrameMaker, but used by filters to spec-
ify number of columns

<DCol um@Gap di nensi on>

Not generated by FrameMaker, but used by filters to spec-
ify column gap

<DPageSi ze W H>

Document’s default page size and orientation; if Wis less
than H, the document’s orientation is portrait; otherwise it
is landscape

Pagination

<DSt art Page i nt eger >

Starting page number

<DPageNuntt yl e keywor d>

Page numbering style

keywor d can be one of:
Ar abi c
UCRoman
LCRoman

UCAI pha

LCAl pha
ZenLCAl pha
ZenUCAl pha
Kanj i Nuneric
Kanj i Kazu
Busi nessKazu

<DPagePoi nt St yl e keywor d>

Point page number style

keywor d can be one of:
Ar abi c

UCRoman

LCRoman

UCAI pha

LCAl pha

<DTwoSi des bool ean>

Yes specifies two-sided layout

<DParity keyword>

Specifies whether first page is left or right page

keywor d can be one of:
FirstlLeft
Fi r st Ri ght

<DPageRoundi ng keywor d>

Method for removing blank pages or modifying total page
count before saving or printing

keywor d can be one of:
Del et eEnpt yPages
MakePageCount Even
MakePageCount Gdd
Dont ChangePageCount

<DFr ozenPages bool ean>

Yes if Freeze Pagination is on

Document format properties

<DSrar t Quot esOn bool ean>

Use curved left and right quotation marks

<DSnart SpacesOn bool ean>

Prevents entry of multiple spaces

<DLi nebr eakChars string>

OK to break lines at these characters

84

Online manual

ADOBE FRAMEMAKER 7.0 |85
MIF Document Statements

<DPunct uati onChars string>

Punctuation characters that FrameMaker does not strip
from run-in heads; these characters override the default
punctuation set in Pgf Runl nDef aul t Punct (see
page 60)

Conditional text defaults

<DShowAl | Condi ti ons bool ean>

Shows or hides all conditional text

<DDi spl ayOverri des bool ean>

Turns format indicators of conditional text on or off

Footnote properties

<DFNot eTag string>

Paragraph and reference frame tag for document foot-
notes

<DFNot eMaxH di nensi on>

Maximum height allowed for document footnotes

<DFNot eRest art keywor d>

Document footnote numbering control by page or text
flow

keywor d can be one of:
Per Page
Per Fl ow

<FNot eSt art Num i nt eger >

First document footnote number

<DFNot eNuntt yl e keywor d>

Document footnote numbering style

keywor d can be one of:
Ar abi c
UCRoman
LCRoman

UCAI pha

LCAl pha
ZenLCAl pha
ZenUCAI pha
Kanj i Nuneric
Kanj i Kazu
Busi nessKazu
Cust om

<DFNot eLabel s string>

Characters to use in custom document footnote numbers

<DFNot eAnchor Pos keywor d>

Placement of document footnote number in text

keywor d can be one of:
FNSuper scri pt
FNBasel i ne
FNSubscri pt

<DFNot eNunber Pos keywor d>

Placement of number in document footnote

keywor d can be one of:
FNSuper scri pt
FNBasel i ne
FNSubscri pt

<DFNot eAnchor Prefi x string>

Prefix before document footnote number in text

<DFNot eAnchor Suf fi x string>

Suffix after document footnote number in text

<DFNot eNunber Prefi x string>

Prefix before number in document footnote

<DFNot eNunber Suf fi x string>

Suffix after number in document footnote

Online manual

ADOBE FRAMEMAKER 7.0 |86
MIF Document Statements

Table footnote properties

<DTbl FNot eTag string>

Same meaning for the following statements as the corre-

sponding document footnote properties

<DTbl FNot eLabel s string>

<DTbl FNot eNuntt yl e keywor d>

<DThl FNot eAnchor Pos keywor d>

<DTbl FNot eNunber Pos keywor d>

<DTbl FNot eAnchor Prefi x string>

<DTbl FNot eAnchor Suf fi x string>

<DTbl FNot eNunber Prefi x string>

<DTbl FNot eNunber Suf fi x string>

Change bar properties

<DChBar Gap di nensi on>

Change bar distance from column

<DChBar W dt h di nmensi on>

Thickness of change bar

<DChBar Posi ti on keyword>

Position of change bar

keywor d can be one of:
Lef t OF Col

Ri ght OF Col

Near est Edge

Fur t hest Edge

<DChBar Col or tagstring>

Change bar color (see “ColorCatalog statement”on

page 78)

<DAut oChBar s bool ean>

Turns automatic change bars on or off

Document view properties

<DG i dOn bool ean>

Turns on page grid upon opening

<DPageGri d di mensi on>

Spacing of page grid

<DSnapGri d di mensi on>

Spacing of snap grid

<DSnapRot ati on degrees>

Angle of rotation snap

<DRul er sOn bool ean>

Turns on rulers upon opening

<DFul | Rul er s bool ean>

Turns on formatting ruler upon opening

<DBor der sOn bool ean>

Turns on borders upon opening

<DSynbol sOn bool ean>

Turns on text symbols upon opening

<DG aphi csO f bool ean>

Yes displays text only

Online manual

ADOBE FRAMEMAKER 7.0
MIF Document Statements

<DPageScrol | i ng keyword>

Specifies how FrameMaker displays consecutive pages

keywor d can be one of:
Vari abl e

Hori zont al

Verti cal

Faci ng

<DCurrent Vi ew i nt eger >

Specifies current color view (1- 6)

<DLi nkBoundari esOn bool ean>

Turns on boundaries for Macintosh publishers upon open-
ing

View Only document properties

<DVi ewOnl y bool ean>

Yes specifies View Only document (locked)

<DVi ewOnl yXRef keyword>

Changes behavior of active cross-references in View Only
document (see page 46)

keywor d can be one of:
CGot oBehavi or
OpenBehavi or

Not Acti ve

<DVi ewOnl ySel ect keywor d>

Disables/enables user selection in View Only document,
including selection with modifier keys, and sets highlight-
ing style of destination markers for active cross-references
(see "Using active cross-references” on page 46)

keywor d can be one of:

No (disable user selection)

Yes (enable user selection and highlighting)

User Onl y (enable selection but not highlighting)

<DVi ewOnl yNoOp Oxnnn>

Disables a command in a View Only document; command
is specified by hex function code (see page 47)

<DVi ewOnl yW nBor der s bool ean>

No suppresses display of scroll bars and border buttons in
document window of View Only document

<DVi ewOnl yW nMenubar bool ean>

No suppresses display of document window menu bar in
View Only document

<DVi ewOnl yW nPopup bool ean>

No suppresses display of document-region pop-up menus
in View Only document

<DVi ewOnl yW nPal et t e bool ean>

Yes makes window behave as command palette window
in View Only document

Document default language

<DLanguage keywor d>

Hyphenation and spell-checking language for text lines;
for allowed keywords, see Pgf Language on page 61

Color printing

<DNoPri nt SepCol or tagstring>

Tag name of color not to print;any color not included here
is printed

<DPri nt ProcessCol or tagstring>

Tag name of process color to print as separation

<DPri nt Separ ati ons bool ean>

Yes prints separations

<DTr apwi seConpati bility bool ean>

When printing to a PostScript file, Yes generates post-
script optimized for use with the TrapWise application

87

Online manual

ADOBE FRAMEMAKER 7.0 (88
MIF Document Statements

<DPri nt Ski pBlI ankPages bool ean>

Yes skips blank pages when printing

Superscripts and subscripts

<DSuperscri pt Si ze percent >

Scaling factor for superscripts expressed as percentage of
the current font size

<DSubscri pt Si ze percent >

Scaling factor for subscripts expressed as percentage of
current font size

<DSnual | CapsSi ze percent >

Scaling factor for small caps expressed as percentage of
current font size

<DSuper scri pt Shift percent>

Baseline offset of superscripts expressed as percentage of
current font size

<DSubscri pt Shift percent>

Baseline offset of subscripts expressed as percentage of
current font size

<DSuperscript Stretch percent>

Amount to stretch or compress superscript, where 100%
means no change

<DSubscri pt Stretch percent>

Amount to stretch or compress subscript, where 100%
means no change

<DSnal | CapsStretch percent>

Amount to stretch or compress small caps, where 100%
means no change

<DRubi Si ze percent age>

The size of the rubi characters, proportional to the size of
the oyamoji characters (see “Rubi text” on page 212.)

Reference properties

<DUpdat eXRef sOnCpen bool ean>

Yes specifies that cross-references are automatically
updated when the document is opened

<DUpdat eText | nset sOnOpen bool ean>

Yes specifies that text insets are automatically updated
when the document is opened

Acrobat preferences

<DAcr obat Booknar ksl ncl udeTagNanes
bool ean>

Yes specifies that each Acrobat Bookmark title begins
with the name of the paragraph tag

<DGener at eAcr obat | nf o bool ean>

Yes sets the document’s print options to their required
states for generating Acrobat information

Document-specific menu bars

<DMenuBar string>

Name of the menu bar displayed by an FDK client when the
documentis opened;if an empty string is specified or if the
menu bar is not found, the standard FrameMaker menu bar
is used

<DVoMenuBar string>

Name of the menu bar displayed by an FDK client when the
document is opened in View Only mode;if an empty string
is specified or if the menu bar is not found, the standard
view-only menu bar is used

Online manual

ADOBE FRAMEMAKER 7.0 |89
MIF Document Statements

Math properties

For more information, see ,"MIF Equation Statements.”

Structure properties

For more information, see ,"MIF Statements for Structured
Documents and Books.”

Miscellaneous properties

<DMagi cMar ker i nteger> Type number of the marker used to represent a delete
mark
<Dvagi cMar ker i nt eger> Type number of the marker used to represent a delete

mark

<Document

Document properties

<DNextUnique ID>

Refers to the next object with a<Uni que | D> statement; generated
by FrameMaker and should not be used by filters

Window properties

<DViewRect XY W H> Position and size of document window based on position and size of
the document region within containing window; DVi ewRect takes
precedence over DW ndowRect

<DWindowRect XY W H> Position and size of document window based on the containing win-

dow (including the title bar, etc.)

<DViewScale percentage>

Current zoom setting

Column properties

<DMargins LT R B>

Not generated by FrameMaker, but used by filters to specify text mar-
gins; ignored unless DCol umms is specified

<DColumns integer>

Not generated by FrameMaker, but used by filters to specify number of
columns

<DColumnGap dimension>

Not generated by FrameMaker, but used by filters to specify column
gap

<DPageSize W H>

Document’s default page size and orientation; if W is less than H, the
document’s orientation is portrait; otherwise it is landscape

Volume, chapter, and page numbering properties

Volume numbering

<VolumeNumStart integer>

Starting volume number

<VolumeNumStyle keyword>

Style of volume numbering

keyword can be one of:
Ar abi c
UCRoman
LCRoman

UCAI pha

LCAl pha

Kanj i Nuneri c
ZenAr abi ¢
ZenUCAl pha
ZenLCAl pha
Kanj i kazu
Busi nessKazu
Cust om

<VolumeNumText string>

When Vol uneNunst yl e is set to Cust omthis is the string to use

Online manual

ADOBE FRAMEMAKER 7.0 (90
MIF Document Statements

<VoINumComputeMethod keyword>

Volume numbering

keyword can be one of:

St art Nunber i ng (restart numbering)

Cont i nueNunber i ng (continue numbering from previous docu-
ment in book)

UseSaneNunber i ng (use the same numbering as previous docu-
ment in book)

Chapter numbering

<ChapterNumStart integer>

Starting chapter number

<ChapterNumStyle keyword>

Style of chapter numbering

keyword can be one of:
Ar abi c
UCRoman
LCRoman

UCAl pha

LCAl pha

Kanj i Nuneric
ZenAr abi c
ZenUCAl pha
ZenLCAl pha
Kanj i kazu
Busi nessKazu
Cust om

<ChapterNumText string>

When Chapt er Nunt yl e is set to Cust ompthis is the string to use

<ChapterNumComputeMethod keyword>

Chapter numbering

keyword can be one of:

St art Nunmber i ng (restart numbering)

Cont i nueNunber i ng (continue numbering from previous docu-
ment in book)

UseSaneNunber i ng (use the same numbering as previous docu-
ment in book)

Page numbering

<DPageNumStyle keyword>

Page numbering style

keyword can be one of:
Ar abi c
UCRoman
LCRoman

UCAl pha

LCAl pha
ZenLCAl pha
ZenUCAl pha
Kanj i Nuneri c
Kanj i Kazu
Busi nessKazu

<DPagePointStyle keyword>

Point page number style

keyword can be one of:
Ar abi c

UCRoman

LCRonman

UCAI pha

LCAl pha

<DStartPage integer>

Starting page number

Online manual

ADOBE FRAMEMAKER 7.0 (91
MIF Document Statements

<ContPageNum boolean>

Yes means continue page numbering from the previous document in
the book

Pagination

<DTwoSides boolean>

Yes specifies two-sided layout

<DParity keyword>

Specifies whether first page is left or right page

keyword can be one of:
FirstLeft
Fi rst Ri ght

<DPageRounding keyword>

Method for removing blank pages or modifying total page count
before saving or printing

keyword can be one of:

Del et eEnpt yPages
MakePageCount Even
MakePageCount Cdd
Dont ChangePageCount

<DFrozenPages boolean>

Yes if Freeze Pagination is on

Document format properties

<DSmartQuotesOn boolean>

Use curved left and right quotation marks

<DSmartSpacesOn boolean>

Prevents entry of multiple spaces

<DLinebreakChars string>

OK to break lines at these characters

<DPunctuationChars string>

Punctuation characters that FrameMaker does not strip from run-in
heads; these characters override the default punctuation set in
Pgf Runl nDef aul t Punct (see page 60)

Conditional text defaults

<DShowAllConditions boolean>

Shows or hides all conditional text

<DDisplayOverrides boolean>

Turns format indicators of conditional text on or off

Footnote properties

<DFNoteTag string>

Paragraph and reference frame tag for document footnotes

<DFNoteMaxH dimension>

Maximum height allowed for document footnotes

<DFNoteRestart keyword>

Document footnote numbering control by page or text flow

keyword can be one of:
Per Page
Per FI ow

<FNoteStartNum integer>

First document footnote number

Online manual

ADOBE FRAMEMAKER 7.0 (92
MIF Document Statements

<DFNoteNumStyle keyword>

Document footnote numbering style

keyword can be one of:
Ar abi c
UCRoman
LCRoman

UCAl pha

LCAl pha
ZenLCAl pha
ZenUCAl pha
Kanj i Nuneri c
Kanj i Kazu
Busi nessKazu
Cust om

<DFNoteLabels string>

Characters to use in custom document footnote numbers

<DFNoteComputeMethod keyword>

Footnote numbering

keyword can be one of:
Cont i nue (continue numbering from previous component in book)
Rest art (restart numbering)

<DFNoteAnchorPos keyword>

Placement of document footnote number in text

keyword can be one of:
DNZvmEPTYPLITT
ONBaoehve
DONZvpoypurt

<DFNoteNumberPos keyword>

Placement of number in document footnote

keyword can be one of:
FNSuper scri pt
FNBasel i ne
FNSubscri pt

<DFNoteAnchorPrefix string>

Prefix before document footnote number in text

<DFNoteAnchorSuffix string>

Suffix after document footnote number in text

<DFNoteNumberPrefix string>

Prefix before number in document footnote

<DFNoteNumberSuffix string>

Suffix after number in document footnote

Table footnote properties

<DTblIFNoteTag string>

Same meaning for the following statements as the corresponding doc-
ument footnote properties

<DTblFNoteLabels string>

<DTbIFNoteNumStyle keyword>

<DTbIFNoteAnchorPos keyword>

<DTbIFNoteNumberPos keyword>

<DTblIFNoteAnchorPrefix string>

<DTblIFNoteAnchorSuffix string>

<DTbIFNoteNumberPrefix string>

<DTbIFNoteNumberSuffix string>

Change bar properties

Online manual

ADOBE FRAMEMAKER 7.0
MIF Document Statements

<DChBarGap dimension>

Change bar distance from column

<DChBarWidth dimension>

Thickness of change bar

<DChBarPosition keyword>

Position of change bar

keyword can be one of:
Left OF Col

Ri ght O Col

Near est Edge

Furt hest Edge

<DChBarColor tagstring>

Change bar color (see “ColorCatalog statement” on page 78)

<DAutoChBars boolean>

Turns automatic change bars on or off

Document view properties

<DGridOn boolean>

Turns on page grid upon opening

<DPageGrid dimension>

Spacing of page grid

<DSnapGrid dimension>

Spacing of snap grid

<DSnapRotation degrees>

Angle of rotation snap

<DRulersOn boolean>

Turns on rulers upon opening

<DFullRulers boolean>

Turns on formatting ruler upon opening

<DBordersOn boolean>

Turns on borders upon opening

<DSymbolsOn boolean>

Turns on text symbols upon opening

<DGraphicsOff boolean>

Yes displays text only

<DPageScrolling keyword>

Specifies how FrameMaker displays consecutive pages

keyword can be one of:
Vari abl e

Hori zont al

Verti cal

Faci ng

<DCurrentView integer>

Specifies current color view (1- 6)

<DLinkBoundariesOn boolean>

Turns on boundaries for Macintosh publishers upon opening

View Only document properties

<DViewOnly boolean>

Yes specifies View Only document (locked)

<DViewOnlyXRef keyword>

Changes behavior of active cross-references in View Only document

(see page 46)

keyword can be one of:
Got oBehavi or
OpenBehavi or

Not Act i ve

93

Online manual

ADOBE FRAMEMAKER 7.0 (94
MIF Document Statements

<DViewOnlySelect keyword>

Disables/enables user selection in View Only document, including
selection with modifier keys, and sets highlighting style of destination
markers for active cross-references (see “Using active cross-references”
on page 46)

keyword can be one of:

No (disable user selection)

Yes (enable user selection and highlighting)

User Onl y (enable selection but not highlighting)

<DViewOnlyNoOp Oxnnn>

Disables a command in a View Only document; command is specified
by hex function code (see page 47)

<DViewOnlyWinBorders boolean>

No suppresses display of scroll bars and border buttons in document
window of View Only document

<DViewOnlyWinMenubar boolean>

No suppresses display of document window menu bar in View Only
document

<DViewOnlyWinPopup boolean>

No suppresses display of document-region pop-up menusinView Only
document

<DViewOnlyWinPalette boolean>

Yes makes window behave as command palette window in View Only
document

Document default language

<DLanguage keyword>

Hyphenation and spell-checking language for text lines; for allowed
keywords, see Pgf Language on page 61

Color printing

<DNoPrintSepColor tagstring>

Tag name of color not to print; any color not included here is printed

<DPrintProcessColor tagstring>

Tag name of process color to print as separation

<DPrintSeparations boolean>

Yes prints separations

<DTrapwiseCompatibility boolean>

When printing to a PostScript file, Yes generates postscript optimized
for use with the TrapWise application

<DPrintSkipBlankPages boolean>

Yes skips blank pages when printing

Superscripts and subscripts

<DSuperscriptSize percent>

Scaling factor for superscripts expressed as percentage of the current
font size

<DSubscriptSize percent>

Scaling factor for subscripts expressed as percentage of current font
size

<DSmallCapsSize percent>

Scaling factor for small caps expressed as percentage of current font
size

<DSuperscriptShift percent>

Baseline offset of superscripts expressed as percentage of current font
size

<DSubscriptShift percent>

Baseline offset of subscripts expressed as percentage of current font
size

<DSuperscriptStretch percent>

Amount to stretch or compress superscript, where 100% means no
change

<DSubscriptStretch percent>

Amount to stretch or compress subscript, where 100% means no
change

Online manual

ADOBE FRAMEMAKER 7.0 (95
MIF Document Statements

<DSmallCapsStretch percent>

Amount to stretch or compress small caps, where 100% means no
change

<DRubiSize percentage>

The size of the rubi characters, proportional to the size of the oyamoji
characters (see “Rubi text” on page 212.)

Reference properties

<DUpdateXRefsOnOpen boolean>

Yes specifies that cross-references are automatically updated when
the document is opened

<DUpdateTextInsetsOnOpen
boolean>

Yes specifies that text insets are automatically updated when the doc-
ument is opened

PDF preferences

<DAcrobatBookmarksIncludeTagNames boolean>

Yes specifies that each PDF Bookmark title begins with the name of
the paragraph tag

<DGenerateAcrobatinfo boolean>

Yes sets the document’s print options to their required states for gen-
erating PDF information

<DPDFAIINamedDestinations boolean>

Yes indicates that FrameMaker will create named destinations for all
paragraphs and elements in the document; this style of marking cre-
ates larger PDF files

<DPDFAIllPages boolean>

A statement to indicate whether to use the values in DPDF-
St ar t Page and DPDFEndPage to distill a range of pages.When
set to Yes, FrameMaker distills all pages in the document.

<DPDFBookmarks boolean>

Yes indicates that FrameMaker will create PDF bookmarks when you
save as PDF

<DPDFConvertCMYK boolean>

A setting that determines whether to send CMYK or RGB color values to
the Distiller.This setting can be made and stored on documents in any
platform. However, a setting of Yes only has an effect when saving as
PDF on the Macintosh.

<DPDFDestsMarked boolean>

Yes indicates that the paragraphs and elements that are targets of

hypertext markers or cross-references have been marked according to
optimization rules for version 6.0 or later; this style of marking makes it
unnecessary to use <DPDFCr eat eNanedDest i nati ons Yes>

<DPDFEndPage ‘string’>

A string for the page number fot the ending page in the page range _
to use this setting, DPDFAl | Pages must be set to No.

<DPDFJobOptions ‘string’>

A string specifying the Distiller job options to use when distilling the
document.

<DPDFOpenBookmarkLevel number>

A setting to specify at what level of the bookmark hierarchy to close all
bookmarks. A setting of O closes all bookmarks.

<DPDFOpenFit ‘string’>

A string to specify how to fit the PDF document into the Acrobat appli-
cation window when it opens — can be one of Def aul t ,Page,

W dt h,Hei ght ,or None. Any other string value resolves to

Def aul t .Use None in conjunction with DPDFQpenZoom

<DPDFOpenPage ‘string’>

A string for the page number for the page at which you want the PDF
file to open.

<DPDFOpenZoom number>

A number to specify the zoom percentage when opening the PDF doc-
ument.To use this setting, DPDFQpenPage must either be absent or
set to None — otherwise FrameMaker ignores this setting.

<DPDFPageHeight number>

A number for the page width — to use this setting DPDFPageSi z-
eSet must be set to Yes.

Online manual

ADOBE FRAMEMAKER 7.0 (96
MIF Document Statements

<DPDFPageSizeSet boolean>

A statement to indicate whether to use the values in DPDFPage-
W dt h and DPDFPageHei ght when distilling the document.When
set to No, FrameMaker ignores the width and height settings.

<DPDFPageWidth number>

A number for the page height — to use this setting, DPDFPageSi z-
eSet must be setto Yes

<DPDFRegMarks ‘string’>

A string specifying which registration marks to use.Can be one of
None,West er n,or Torbo — any other string resolves to None.

<DPDFSaveSeparate Yes/No>

A setting that specifies whether to save a book as one PDF file or as a
collection of separate PDF files for each component in the book.This
setting is ignored in individual documents.

<DPDFStartPage ‘string’>

A string for the page number for the starting page in the page range _
top use this setting, DPDFAI | Pages must be set to No.

<DPDFStructure boolean>

Yes indicates that the document includes structure statements for
Structured PDF

<DPDFStructureDefined boolean>

Statement to determine how FrameMaker should display the PDF
structure settings in the PDF Setup dialog box; this statement is for
internal FrameMaker use, and you should not modify it

<PDFDoclInfo

Specifies the information that appears in the File Info dictionary when
you save the document as PDF

Each File Info entry consists of one Key statement followed by at least
one Val ue statement.FrameMaker ignores any Key statement that is
not followed by at least one Val ue statement.

There is no representation in this statement of the default fields for
Creator,Creati on Date,orMet aData Date.

For more information, see “PDF Document Info” on page 82.

<Key string>

A string of up to 255 ASCII characters that represents the name of a
Document Info field;in PDF the name of a Document Info field must be
126 characters or less.

Represent non-printable characters via # HH, where # identifies a
hexadecimal representation of a character,and HH is the hexadecimal
value for the character. For example, use #2 3 to represent the “#” char-
acter.Zero-value hex -codes (#00) are illegal.

For more information, see “PDF Document Info” on page 82.

<Value string>

A string of up to 255 ASClI characters that represents the value of a Doc-
ument Info field; because a single MIF string contains no more than 255
ASCII characters, you can use more than one Val ue statement for a
given Key

A Value can include Unicode characters; represent Unicode characters
via &#xHHHH;, where &#x opens the character code, the”;” char-
acter closes the character code,and HHHH are as many hexadecimal
values as are required to represent the character.

For more information, see “PDF Document Info” on page 82.

End of PDFDoc| nf o statement

Online manual

ADOBE FRAMEMAKER 7.0 (97
MIF Document Statements

<DocFilelnfo>

Specifies the same information that appears in
<PDFDoc| nf 0>, except it expresses these values as encoded data.
You should not try to edit this data.

DocFilelnfo also represents the values of the default fields for Cr e-
ator,Creation Date,and Met aDat a Dat e.

For more information, see “Document File Info” on page 82.

<encoded> XMP information as encoded data which is generated by FrameMaker.
This information corresponds to the values set in the File Info dialog
box. For any document, there can be an arbitrary number of XMP state-
ments.

> End of DocFilelnfo statement

Document-specific menu bars

<DMenuBar string>

Name of the menu bar displayed by an FDK client when the document
is opened;if an empty string is specified or if the menu bar is not found,
the standard FrameMaker menu bar is used

<DVoMenuBar string>

Name of the menu bar displayed by an FDK client when the document
is opened in View Only mode; if an empty string is specified or if the
menu bar is not found, the standard view-only menu bar is used

Math properties

For more information, see ,“MIF Equation Statements.”

Structure properties

For more information, see ,“MIF Statements for Structured Documents
and Books.”

Miscellaneous properties

<DMagicMarker integer>

Type number of the marker used to represent a delete mark

<DMagicMarker integer>

Type number of the marker used to represent a delete mark

BookComponent statement

BookConponent statements contain the setup information for files that are generated from the document (for

example, a table of contents or an index). BookConponent statements must appear at the top level in the order given
in “MIF file layout” on page 52. These statements are used even if the document does not occur as part of a book. A

BookConponent statement can contain one or more Der i veTag statements.

Syntax

<BookComponent

Book components

<Fi | eNarme pat hname>

Generated file’s device-independent pathname (for pat hnarme syntax, see
page 8)

<Fi | eNaneSuffix string>

Suffix for the generated file

Online manual

ADOBE FRAMEMAKER 7.0 (98
MIF Document Statements

<DeriveType keyword> Type of generated file

keywor d can be one of:
AML (alphabetic marker list)
APL (alphabetic paragraph list)
| DX (index)

| OA (author index)

| OM(index of markers)

I OS (subject index)

| R(index of references)
LOF (list of figures)

L OM(list of markers)

LOP (list of paragraphs)
LOT (list of tables)

LR (list of references)

TQOC (table of contents)
<DeriveTag tagstring> Tags to include in the generated file
<Deri veLi nks bool ean> Yes automatically creates hypertext links in generated files
> End of BookConponent statement

InitialAutoNums statement

The I ni ti al Aut oNuns statement controls the starting values for autonumber series in a document. A MIF file can
have only one | ni ti al Aut oNums statement, which must appear at the top level in the order given in “MIF file
layout” on page 52.

An autonumber format includes a series label to identify the type of autonumber series and one or more counters.
The I ni ti al Aut oNuns statement initializes the counters so that series that continue across files in a book are
numbered correctly. Any statement that increments the counter value starts from the initial setting.

Syntax
<InitialAutoNums

<Aut oNunSer i es
<Fl owTag string> Specifies flow that the file uses to number the series
<Series string> Specifies autonumber series
<NunCount er integer> Initializes autonumber counter
<NunmCount er ..> Additional statements as needed

> End of Aut oNuner i es statement

<Aut oNunferi es..? Additional statements as needed

> Endof I ni ti al Aut oNums statement

Online manual

ADOBE FRAMEMAKER 7.0
MIF Document Statements

Dictionary statement

The Di cti onary statement lists all the words in the document dictionary. A MIF file can have only one Di ct i onary
statement, which must appear at the top level in the order given in “MIF file layout” on page 52.

Syntax
<Dictionary
<OKWord string> Word in dictionary
<OKWord string> Additional statements as needed
> End of Di ct i onary statement
Pages

Pages in a MIF file are defined by a Page statement. A FrameMaker document can have four types of pages:

* Body pages contain the document’s text and graphics.
* Master pages control the appearance of body pages.

* Reference pages contain boilerplate material or graphic art that is used repeatedly in a document, or custom math
elements.

* Hidden pages contain hidden conditional text in a special text flow.

When FrameMaker writes a MIF file, it writes a sequence of numbered body pages. When you generate a MIF file,
you should only define one body page and allow the MIF interpreter to automatically create new body pages as
needed. For more information about using body pages in a MIF file, see “Specifying page layout” on page 31.

Page statement

The Page statement adds a new page to the document. Page statements must appear at the top level in the order
given in “MIF file layout” on page 52.

Syntax

<Page

<PageType keyword> Page type

keywor d can be one of:
Lef t Mast er Page

Ri ght Mast er Page
O her Mast er Page
Ref er encePage
BodyPage

Hi ddenPage

<PageNum string> Page number for additive pages (provided for output filters)

<PageTag tagstring> Names master or reference page; for a body page, specifies a different page
number (for example, a point page) to be used instead of the default page
number

29

Online manual

ADOBE FRAMEMAKER 7.0 | 100
MIF Document Statements

<PageSi ze WH>

Page width and height; written by FrameMaker but ignored when a MIF file
is read or imported (see DPageSi ze on page 84)

<PageAngl e degrees>

Rotation angle of page in degrees (0,90,180,270);angles are measured in
a counterclockwise direction with respect to the page’s original orientation
as determined by the page size (see DPageSi ze on page 84)

<PageBackgr ound keyword>

Names master page to use for current page background (body pages only)

keywor d can be one of:
None

Def aul t

pagenane

<Text Rect ..>

Defines text frame (see page 118)

<Frane..>

Graphic frames on the page (see the section “Graphic objects and graphic
frames”on page 101)

G aphi c object statenents

Objects on the page (see the section “Graphic objects and graphic frames”
on page 101)

Filter statements

<HeaderL string>

Left header string

<Header C string>

Center header string

<Header R string>

Right header string

<FooterL string>

Left footer string

<Foot er C string>

Center footer string

<Foot er R string>

Right footer string

<HFMargins L T R B>

Header/footer margins

<HFFont

Header/footer font (see page 63)

>

<Col ums i nt eger >

Default number of columns

<Col utm@Gap di nmensi on>

Default column gap

End of Page statement

Usage

Master and reference page names (supplied by the PageTag statement) appear in the status bar of a document
window. The PageBackgr ound statement names the master page to use as the background for a body page. A value

of Def aul t tells FrameMaker to use the right master page for single-sided documents and to alternate between the

right and left master pages for a two-sided document. For more information about applying master page layouts to

body pages, see “Specifying page layout” on page 31.

A page of type H ddenPage contains the document’s hidden conditional text. (See “How FrameMaker writes a

conditional document” on page 42.)

Online manual

ADOBE FRAMEMAKER 7.0 | 101
MIF Document Statements

A page’s size and orientation (landscape or portrait) is determined by the PageAng! e statement and the Docunent
substatement DPageSi ze. If DPageSi ze defines a portrait page (one whose height is greater than its width), pages
with an angle of 0 or 180 degrees are portrait; pages with an angle of 90 or 270 degrees are landscape. If DPageSi ze
defines a landscape page (one whose width is greater than its height), pages with an angle of 0 or 180 degrees are
landscape; pages with an angle of 90 or 270 degrees are portrait.

The filter statements are not generated by FrameMaker. When it reads a MIF file generated by a filter, the MIF inter-
preter uses these statements to set up columns and text flows on master pages.

Graphic objects and graphic frames

In a FrameMaker document, graphic objects can appear directly on a page or within a graphic frame. The following
objects are considered graphic objects:

* Anchored and unanchored frames

* Text frames

o Text lines

* Objects created with the drawing tools on the Tools palette: arcs, arrows, ellipses, polygons, polylines, rectangles,
and rounded rectangles

* Math equations
* Groups
* Imported graphic images, such as xwd, TIFF, bitmap images, or vector images

In a MIF file, graphic objects are defined by Obj ect and Fr ane statements. Obj ect refers to any MIF statement that
describes an object, such as Ar ¢, Text Li ne, or Text Rect . Generally, these objects are created and manipulated by
using the Tools palette in a FrameMaker document. This section describes general information that pertains to all
graphic objects, and then lists the MIF statements for graphic objects in alphabetic order.

Object positioning
Each Page statement has nested within it Obj ect and Fr ane statements. If a graphic frame contains objects and other
graphic frames, the graphic frames and objects are listed in the order that they are drawn (object in back first).

For Ovj ect and Fr ame statements, the interpreter keeps track of the current page and current graphic frame. When
the interpreter encounters a Fr ame statement, it assumes the graphic frame is on the current page. Similarly, when
the interpreter encounters an object statement, it assumes the object is in the current graphic frame or page.

When you open a MIF file as a FrameMaker document, the default current page is page 1, and the default current
frame is the page frame for page 1. A page frame is an invisible frame that “contains” objects or graphic frames placed
directly on a page. The page frame is not described by any MIF statement. When you import a MIF file into an
existing FrameMaker document, the default current page is the first page visible when the Import command is
invoked; the current frame is the currently selected frame on that page. If there is no currently selected frame, the
current frame is the page frame for that page.

Generic object statements

All object descriptions consist of the object type, generic object statements containing information that is common
to all objects, and statements containing information that is specific to that type of object. This section describes the
generic object statements.

Online manual

ADOBE FRAMEMAKER 7.0 | 102
MIF Document Statements

Syntax
<ID I D> Object ID number
<G oupl D I D> ID of parent group object
<Uni que | D> ID, persistent across sessions, assigned when FrameMaker generates a MIF

file; used by the FDK client and should not be used by filters

<Pen i nteger>

Pen pattern for lines and edges (see “Values for Pen and Fill statements” on
page 103)

<Fill integer>

Fill pattern for objects (see “Values for Pen and Fill statements” on page 103)

<PenW dt h di nensi on>

Line and edge thickness

<hCol or tagstring>

Applies color from Color Catalog (see page 78)

<oTi nt percentage>

Applies a tint to the object color; 100% is equivalent to the pure object color
and 0% is equivalent to no color at all

<Separ ati on integer>

Applies color; no longer used, but written out by FrameMaker for backward-
compatibility (see “Color statements” on page 244)

<Over pri nt bool ean>

Yes turns on overprinting for the graphic object. No turns on knockout. If
this statement is not present, then the overprint setting from the object’s
color is assumed.

<Runar oundType keyword>

Specifies whether text can flow around the object and, if so, whether the text
follows the contour of the object or a box shape surrounding the object

keywor d can be one of:
Cont our

Box

None

<Runar oundGap di nensi on>

Space between the object and the text flowing around the object; must be a
value between 0.0 and 432.0 points

<Angl e degrees>

Rotation angle of object in degrees; default is 0

Frames, cells,and equations can only be rotated in 90-degree increments; all
other objects can be arbitrarily rotated.

<ReRot at eAngl e di mensi on>

Previous rotation angle of object in degrees

<DashedPattern

<DashedStyl e keywor d>

Specifies whether object is drawn with a dashed or a solid line
keywor d can be one of:

Sol i d

Dashed

<NunfSegnents i nt eger>

Number of dash segments;ignored when MIF file is read

<DashSegnent di nensi on>

Defines a dash segment (see “DashSegment values” on page 104)

<DashSegnent di nensi on>

Additional statements as needed

End of DashedPat t er n statement

Online manual

ADOBE FRAMEMAKER 7.0
MIF Document Statements

<hj ectAttribute Tagged information that gets stored with the object when you save a docu-
ment as Structured PDF

A graphic object can have ny number of ObjectAttribute statements

<Tag string> The tag name for the object attribute
<Val ue string> The text of the object attribute
> End of Obj ect At t ri but e statement
Usage

The | Dsubstatement is necessary only if other objects refer to the object. For example, anchored frames, groups, and
linked text frames require | D substatements.

The G oupl Dstatement is necessary only if the object belongs to a set of grouped objects (G- oup statement). All
objects in the set have the Gr oupl D of the parent object. See “Group statement” on page 109.

Values for Pen and Fill statements

Values for the Pen and Fi | | statements refer to selections in the Tools palette. Graphics can use all the Pen and Fi | |
values illustrated below. Ruling lines and table shadings use only the first seven pen/fill values and 15 (none). The
pen and fill patterns might look different on your system.

Pen/Fill0 — — 2
3 — — 5

6 — — 8

9 — — 1N

12 — — 14

None |— 15

Pen/Fill Patterns in Tools palette

Each Pen, Fi | |, or PenW dt h substatement resets the MIF interpreter’s corresponding current value. If an Obj ect
statement doesn’t include one of these statements, the MIF interpreter uses the current default value for the object
data.

In a FrameMaker document, patterns aren’t associated directly with a document, but with FrameMaker itself. Each
FrameMaker document contains indexes to FrameMaker patterns. You cannot define document patterns in MIF;
you can only specify the values 0—15. However, you can customize a UNIX or Windows version of FrameMaker to
use patterns that differ from the standard set. For information, see the online manuals Customizing FrameMaker for
UNIX and Working on Multiple Platforms for Windows.

Values for the Angle and ReRotateAngle statements

The Angl e statement specifies the number of degrees by which an object is rotated before it is printed or displayed.
In a FrameMaker document, you can rotate an object in either a counterclockwise or clockwise direction. In a MIF
file, the rotation angle is always measured in a counterclockwise direction.

An object without an Angl e statement has an angle of 0 degrees. If an object has a ReRot at eAngl e statement, it
specifies the angle to use when Esc g 0 (zero) is used to return the object to a previous rotation angle. An object with
a ReRot at eAng| e statement must have an angle of 0 degrees.

103

Online manual

ADOBE FRAMEMAKER 7.0
MIF Document Statements

The Angl e and ReRot at eAngl e statements are mutually exclusive. When the MIF interpreter reads an Angl e
statement with a nonzero value, it sets the value of the ReRot at eAngl e statement to 0. When it reads a ReRot at e-
Angl e statement with a nonzero value, it sets Angl e to 0. Thus, if an object has both statements, the MIF interpreter
keeps the state of the most recently read statement.

Objects do not inherit rotation angles from other objects.
FrameMaker rotates objects as follows:

* Polygons, polylines, and Bezier curves are rotated around the center of the edge mass.
* Text lines are rotated around the TLOr i gi n point.

* Arcs are rotated around the center of the bounding rectangle of the arc, not the bounding rectangle of the under-
lying ellipse. The bounding rectangle is the smallest rectangle that encloses an object. See your user’s manual for
more information about rotation.

¢ Other objects are rotated around the center of the object.

DashSegment values

If the DashedSt yl e statement has a value of Dashed, the following DashSegnent statements describe the dashed
pattern. The value of a DashSegnent statement specifies the length of a line segment or a gap in a dashed line. See
the online manual Customizing Adobe FrameMaker for information on changing default dashed patterns in UNIX
versions of FrameMaker. In Windows versions, edit the maker . i ni file in the directory where FrameMaker is
installed. See Customizing Adobe FrameMaker for more information. You can also define custom dash patterns. For
examples, see “Custom dashed lines” on page 222. You cannot change dash patterns for Macintosh versions of
FrameMaker.

Values for the RunaroundType and RunaroundGap statements

The Runar oundType and Runar oundGap statements specify the styles used for the runaround properties of objects:

« If the Runar oundType statement is set to Cont our , text flows around objects in the shape of the contours of the
objects. The Runar oundGap statement specifies the distance between the objects and the text that flows around
them.

« If the Runar oundType statement is set to Box, text flows around objects in the shape of boxes surrounding the
objects. The Runar oundGap statement specifies the distance between the objects and the text that flows around
them.

+ If the Runar oundType statement is set to None, text doesn’t flow around objects, and the value specified by the
Runar oundGap statement is ignored.

Objects inherit the values of these statements from previous objects. Since these statements are used only to change
the inherited value from a previous object, the statements are not needed for every object. For example, if you write
out a MIF file, not all objects will contain these statements.

If these statements do not appear in an object or MIF file, the following rules apply:

+ If an object does not contain the Runar oundType statement or the Runar oundGap statement, FrameMaker uses
the values from the previous Runar oundType and Runar oundGap statements.

* If no previous Runar oundType and Runar oundGap statements exist in the MIF file, FrameMaker uses the default
values <Runar oundType None> and <Runar oundGap 6. 0>.

104

Online manual

ADOBE FRAMEMAKER 7.0 | 105
MIF Document Statements

* For example, if the <Runar oundGap 12. 0> statement appears, all objects after that statement have a 12.0 point
gap from text that flows around them. If this is the only Runar oundGap statement in the MIF file, all objects before
that statement have a 6.0 point gap (the default gap value) from the text that flows around them.

o If the MIF file does not contain any Runar oundType statements or Runar oundGap statements, FrameMaker uses
the default values <Runar oundType None> and <Runar oundGap 6. 0> for all objects in the file.

* For example, 3.x and 4.x MIF files do not contain any Runar oundType statements. When opening these files,
FrameMaker uses the default value <Runar oundType None>, and text does not flow around any of the existing

graphic objects in these files.

AFrames statement

The AFr anes statement contains the contents of all anchored frames in a document. A document can have only one
AFr anes statement, which must appear at the top level in the order given in “MIF file layout” on page 52.

The contents of each anchored frame are defined in a Fr ane statement. Within the text flow, an AFr anme statement
indicates where each anchored frame appears by referring to the ID provided in the original frame description (see

“ParaLine statement” on page 121).

Syntax
<AFrames
<Franme..> Defines a graphic frame (see “Frame statement” on page 107)
<Frane..> Additional statements as needed
> End of AFr anes statement

Arc statement

The Ar ¢ statement describes an arc. It can appear anywhere at the top level, or in a Fr ane or Page statement.

Syntax

<Arc

CGeneric object statenents

Information common to all objects (see page 101)

<HeadCap keywor d>

Type of head cap for lines and arcs

keywor d can be one of:
Ar r owHead

But t

Round

Squar e

<Tai | Cap keyword>

Type of tail cap for lines and arcs

keywor d can be one of:
Ar r owHead

But t

Round

Squar e

<ArrowsStyl e..>

See “ArrowStyle statement” on page 106

Online manual

ADOBE FRAMEMAKER 7.0 | 106
MIF Document Statements

<ArcRect L T WH>

Underlying ellipse rectangle

<Ar cThet a di nensi on>

Start angle

<Ar cDThet a di nensi on>

Arc angle length

End of Ar ¢ statement

Usage

The arc is a segment of an ellipse whose bounding rectangle is defined in Ar cRect . Ar cThet a specifies the starting
point of the arc in degrees. Zero corresponds to twelve o’clock, 90 to three o’clock, 180 to six o’clock, and 270 to nine
o’clock. Ar cDThet a corresponds to the length of the arc. Positive and negative values correspond to clockwise and

counterclockwise extents.

ArrowStyle statement

The Arr owst yl e statement defines both the head cap (at the starting point) and the tail cap (at the ending point) of

lines and arcs.

The arrow style property statements can appear in any order in an Ar r owSt yl e statement. For a complete
description of arrow style properties, see your user’s manual.

Syntax

<ArrowStyle

<Ti pAngl e i nt eger>

Arrowhead tip angle in degrees

<BaseAngl e i nt eger>

Arrowhead base angle in degrees

<Lengt h di nensi on>

Arrowhead length

<HeadType keyword>

Arrowhead type

keywor d can be one of:

Stick
Hol | ow
Filled

<Scal eHead bool ean>

Yes scales head as arrow line gets wider

<Scal eFact or di mensi on>

Scaling factor for arrowhead as line gets wider

End of Ar r owSt y| e statement

Ellipse statement

The El | i pse statement describes circles and noncircular ellipses. It can appear anywhere at the top level, or in a

Fr ame or Page statement.

Online manual

Syntax

ADOBE FRAMEMAKER 7.0 | 107
MIF Document Statements

<Ellipse

CGeneric object statenents

Information common to all objects (see page 101)

<ShapeRect L T WH>

Position and size of object’s bounding rectangle, before rotation, in the page
or graphic frame coordinates

End of El | i pse statement

Frame statement

Usually, a Fr ame statement contains a list of Obj ect and Fr ane statements that define the contents of the graphic

frame and are listed in the draw order from back to front.

The Fr ane statement can appear at the top level or in a Page, Fr ane, or AFr ame statement.

Syntax

<Frame

Ceneric object statenents

Information common to all objects (see page 101)

<ShapeRect L T WH>

Position and size of object, before rotation, in page or graphic frame coor-
dinates

<FrameType keyword>

Whether graphic frame is anchored, and if anchored, the position of the
anchored frame

keywor d can be one of:
Bel ow

Top

Bott om

Inline

Left

Ri ght

I nsi de

Qut si de

Near

Far

Runl nt oPar agr aph
Not Anchor ed

<Tag tagstring>

Name of graphic frame

<Fl oat bool ean>

Yes floats graphic frame to avoid large white space that results when
anchored frame and the line containing it are moved to the next page

<NSCOf f set di nensi on>

Near-side offset

<BLOf f set di nensi on>

Baseline offset

<Anchor Al i gn keywor d>

Alignment of anchored frame

keywor d can be one of:
Left

Cent er

Ri ght

I nsi de

Qut si de

Online manual

ADOBE FRAMEMAKER 7.0
MIF Document Statements

<Anchor Besi de keywor d> Whether the graphic frame is anchored outside of a text frame or a column
in a text frame

keywor d can be one of:
Col um
Text Frane

<Cr opped bool ean> Yes clips sides of graphic frame to fit column

<Frame..> Other graphic frames within this frame

G aphi c object statenents Objects in the graphic frame (see page 101)

> End of Fr ane statement

Usage

Unless the generic object data indicates otherwise, the MIF interpreter assumes that each graphic frame inherits the
properties of the current state.

A Fr ame statement that is contained within an AFr anes statement defines an anchored frame. Any other Fr ane
statement defines an unanchored frame. The assumed value for Fr ameType is Not Anchor ed.

For anchored frames, an AFr ane statement that refers to the frame ID indicates where the anchored frame appears
within the text flow (see “ParaLine statement” on page 121).

Specifications for the position and alignment of anchored frames are described in the following sections.

Position of anchored frames
The Anchor Besi de statement determines whether the graphic frame is anchored to a text column (Col umm) or a text

frame (Text Fr ame).

The Fr aneType statement specifies the position of an anchored frame. A graphic frame can be anchored within a
text column or text frame or outside a text column or text frame.

If the graphic frame is anchored within a text column or text frame, the anchored frame can be positioned in one of
the following ways.

If the graphic frame is anchored within a text column or text The Frame statement contains

frame

At the insertion point of the cursor <FrameType Inline>

At the top of the text column <FrameType Top>

Below the insertion point of the cursor <FrameType Below>

At the bottom of the text column <FrameType Bottom>

Running into the paragraph <FrameType RunIntoParagraph>

If the graphic frame is anchored outside a text column or a text frame, the anchored frame can be positioned in one
of the following ways.

If the graphic frame is anchored outside a text column or text The Frame statement contains
frame

On the left side of the text column or text frame <FrameType Left>

On the right side of the text column or text frame <FrameType Right>

108

Online manual

ADOBE FRAMEMAKER 7.0
MIF Document Statements

If the graphic frame is anchored outside a text column or text
frame

The Frame statement contains

the book (the “inside edge”)

On the side of the text column or text frame closer to the bindingof <FrameType Inside>

of the book (the “outside edge”)

On the side of the text column or text frame farther from the binding <FrameType Outside>

On the side of the text column or text frame closer to any page edge <FrameType Near>

On the side of the text column or text frame farther from any page
edge

<FrameType Far>

Alignment of anchored frames

If a graphic frame is anchored within a text column or text frame, the Anchor Al i gn statement specifies the

alignment of the anchored frame. Unless anchored at the insertion point of the cursor, the graphic frame can be

aligned in one of the following ways.

If the graphic frame is aligned

The Frame statement contains

With the left side of the text column or text frame

<AnchorAlign Left>

In the center of the text column or text frame

<AnchorAlign Center>

With the right side of the text column or text frame

<AnchorAlign Right>

With the side of the text column or text frame closer to the binding
of the book (the “inside edge”)

<AnchorAlign Inside>

With the side of the text column or text frame farther from the
binding of the book (the “outside edge”)

<AnchorAlign Outside>

Group statement

The G oup statement defines a group of graphic objects and allows objects to be nested. The Gr oup statement must

appear after all the objects that form the group. It can appear at the top level or within a Page or Fr ame statement.

Syntax
<Group
<ID I D> Group ID
<Uni que | D> ID, persistent across sessions, assigned when FrameMaker generates a MIF file; used by the FDK
client and should not be used by filters
<Angl e..> Rotation angle of group (see page 101)
> End of G oup statement
Usage

When the MIF interpreter encounters a G oup statement, it searches all objects within the current graphic frame for
those group IDs that match the ID of the Gr oup statement. These objects are then collected to form the group. All
objects with the same group ID must be listed in the MIF file before their associated Gr oup statement is listed. If

multiple G oup statements have the same ID, the results will be unpredictable. For more information about the

group 1D, see “Generic object statements” on page 101.

109

Online manual

ImportObject statement

ADOBE FRAMEMAKER 7.0 | 110
MIF Document Statements

The | nport Obj ect statement describes an imported graphic. It can appear at the top level or within a Page or Fr ane

statement.

The imported graphic is either copied into the document or imported by reference:

If the imported graphic is copied into the document, the data describing the graphic is recorded within the | mpor -
t Obj ect statement. The description of a graphic in a given format is called a facet.

FrameMaker uses facets to display graphics, print graphics, or store additional graphic information. Imported

graphics can have more than one facet, which means that the graphic is described in more than one format.

If the graphic is imported by reference, the data describing the graphic is not stored within the | npor t Obj ect

statement. Instead, a directory path to the file containing the graphic data is recorded in the I npor t Obj ect

statement.

Syntax

<ImportObject

Ceneric object statenents

Information common to all objects (see page 101)

<| nport GbFi | e pat hname>

Object’s UNIX-style pathname; no longer used, but written out by
FrameMaker for backward-compatibility

<l mpor t CoFi | eDl pat hnane>

Object’s device-independent pathname (see page 8)

<l mport Hi nt string>

Record identifying the filter used for graphics imported by reference (see
“Record of the filter used to import graphic by reference” on page 113)

<ShapeRect L T WH>

Position and size of object, before rotation, in the page or graphic frame
coordinates

<Bi t MapDpi i nt eger >

Scaling value for bitmap file; ignored for FrameVector graphics

<| npor t CbFi xedSi ze bool ean>

Yes inhibits scaling of bitmap file (see “Size, position, and angle of
imported graphics”on page 111); ignored for FrameVector graphics

<Fl i pLR bool ean>

Yes flips object about the vertical axis

=string

Specifies the name of the facet used to describe the graphic imported by
copying (see ,“Facet Formats for Graphics.”)

&Ykeywor d

Identifies the data type used in the facet (see ,“Facet Formats for Graph-
ics.”).

keywor d can be one of:
V (for unsigned bytes)

i (forinteger data)
m(for metric data)

Data describing the imported graphic; data must begin with the amper-
sand character (see ,“Facet Formats for Graphics.”)

&\ x

Marks the beginning or end of data represented in hexadecimal (see
,"Facet Formats for Graphics.”)

=Endl nset

End of the data describing the imported graphic

<NativeOrigin X Y>

Coordinates of the origin of the imported graphic within the page or
frame; applicable for graphics that use coordinate systems, such as EPS

<l npor t CbEdi t or string>

Name of application to call to edit bitmap graphic inset or imported
object; ignored for FrameVector graphics

Online manual

ADOBE FRAMEMAKER 7.0 |111
MIF Document Statements

<l nport GoUpdat er string> Identifies the imported graphic as a Macintosh subscriber or an embed-
ded Windows OLE object (for a description of the syntax of the string, see
“Methods of importing graphics”on page 112)

> End of | npor t Obj ect statement

Usage

The I npor t Obj ect statement describes the imported graphic’s position, size, and angle. If the graphic is imported
by reference, the statement describes the path to the graphic file. If the imported graphic is copied into the document,
the statement contains the data describing the graphic. Data describing the graphic is stored in one or more facets.
If the graphic is linked with an application (through FrameServer or an FDK client), the statement also describes the
path to the application used to edit the graphic.

Usage of some of the aspects of the | npor t Obj ect statement is described in the following sections.

Graphic file formats
You can import different types of graphic files into a FrameMaker document.
Bitmaps: The term bitmap graphics (also called raster graphics) refers to graphics represented by bitmap data.

Graphics file formats recognized by FrameMaker include FrameImage, Sun™ rasterfile, xwd, TIFE, MacPaint, PCX,
and GIF files.

Vector: The term vector graphics (also called object-oriented graphics) refers to graphics represented by geometric
data. Graphics file formats recognized by FrameMaker include FrameVector, CGM, Corel Draw, Micrografx
Drawing Format, DXF, EPS, GEM, HPGL, IGES, PICT, WME, and WPG. Note that some of these graphic file formats
can also contain bitmap data.

Size, position, and angle of imported graphics

When you import a MIF file, FrameMaker determines the size of the graphic by the graphic type and the value of the
| mpor t CbFi xedSi ze statement.

If the file format is Image scaled Size determined by

Bitmap with <I nport ObFi xedSi ze Yes> No ShapeRect statement

Bitmap with <| npor t CoFi xedSi ze No> Yes Bi t MapDpi statement

Vector Yes Dimensions specified in the vector data
Encapsulated PostScript, QuickDraw PICT No Bounding box information in imported image

Position and coordinate systems: Some types of graphics (such as EPS) use coordinate systems to specify the
position of the graphic. When these types of graphics are imported into a FrameMaker document, the Nat i veO-
ri gin statement specifies the coordinates of the origin of the graphic within the page or frame. If the imported
graphic is updated, FrameMaker uses the coordinates from the Nati veOri gi n statement to prevent the graphic
from shifting on the page or frame.

Size and scale of TIFF graphics: FrameMaker doesn’t use internal TIFF dpi information for sizing purposes
because not all TIFF files contain that information and because it may be incorrect. FrameMaker allows users to set
the dpi manually when importing the TIFF file. Once the graphic is imported, FrameMaker displays the dpi infor-
mation in the Object Properties dialog box.

Online manual

ADOBE FRAMEMAKER 7.0
MIF Document Statements

QuickDraw PICT graphics on the Macintosh: Macintosh versions of FrameMaker doesn’t parse a QuickDraw
PICT image. Instead, these FrameMaker treats the image as an opaque object that is rendered by the operating
system. After you import a QuickDraw PICT image, however, you can set an explicit dpi with the Properties
command on the Graphics menu. When you do so, FrameMaker scales the image on the assumption that its original
size was 72 dpi.

Normally, QuickDraw PICT graphics are treated as vector graphics, but you can use Bi t MapDpi to help optimize
printed output.

Angle of imported graphics: If an object contains both a <Fl i pLR Yes> statement and an Angl e statement with
a nonzero value, the object is first flipped around the vertical axis and then rotated by the value specified in Angl e.

Methods of importing graphics

As mentioned previously, an imported graphic can be imported by reference or copied into the document. In
Macintosh and Windows versions, an imported graphic can be a subscriber or an embedded OLE object.

The following table shows how the structure of the I npor t Obj ect statement differs, depending on how the graphic
is imported. For an explanation of the facet syntax, see , “Facet Formats for Graphics.”

If the graphicis The ImportObject statement contains
Copied into the FrameMaker document =facet _name

&dat a_t ype

&f acet _data

=Endl nset
Imported by reference <l npor t ObFi | eDl pat hnane>

<l nportH nt string>

An embedded OLE object (Windows only) =0LE
&dat a_t ype
&f acet _data
=facet _name
&dat a_t ype
&f acet _data
=Endl nset
<l nport CbUpdater "~ OLE >

A graphics subscriber (Macintosh only) =facet _name
&dat a_t ype
&f acet _data
=EndlI nset
<l npor t CoUpdat er " MacSubscri ber. | SI D. Mod-
Dat e. pat hname' >

If the imported graphic is a Macintosh subscriber, the subscriber is specified by the * Mac Sub-
scri ber. | SI D. ModDat e. pat hname' string in the | npor t CoUpdat er statement. The fields in this string are
explained below:

* | SI Dis an internal section ID plus 65536 (1000 hex).
» MbdDat e is a modification date in hexadecimal in Macintosh (1904) date format.

* pat hnane is a device-independent pathname to the edition.

Online manual

112

ADOBE FRAMEMAKER 7.0
MIF Document Statements

Filenames of objects imported by reference

When an object is imported by reference to an external file, the I npor t Obj ect statement contains the file pathname.

The | nport QbFi | eDl statement specifies the pathname for graphics imported by reference. The statement supplies
a device-independent pathname so that files can easily be transported across different types of systems (see “Device-
independent pathnames” on page 8).

In previous versions of FrameMaker, the | npor t QoFi | e statement was used to specify the pathname for graphics
imported by reference. The statement, which is no longer used, supplies a UNIX-style pathname, which uses a slash
(/) to separate directories (for example, <I mport CoFi | e "~/ usr/doc/tenpl ate. mi f'>). FrameMaker still writes
the 1 nport OoFi | e statements to a MIF file for compatibility with version 1.0 of FrameMaker.

Facets in imported graphics

If a graphic is copied into a document, the data describing the graphic is stored as facets in the MIF file. (Graphics
imported by reference also use facets, but these are temporary and are not saved to the file. A MIF file with a graphic
imported by reference does not contain any facets.)

A facet contains graphic data in a specific format. For example, a TIFF facet contains graphic data described in TIFF
format. An EPSI facet contains graphic data in EPSI format.

Facets and facet formats are described in the appendixes of this manual:

* For a general description of facets and facet formats, see , “Facet Formats for Graphics.”

* For a description of the facet format for EPSI graphic data, see , “EPSI Facet Format.”

* For a description of the Framelmage format used in facets, see , “Framelmage Facet Format.”

* For a description of the FrameVector format in facets, see , “FrameVector Facet Format.”

Record of the filter used to import graphic by reference

The | npor t H nt statement contains a record to identify the filter that was used to import the graphic by reference.
FrameMaker uses the record to find the correct filter to reimport the graphic when a user opens the document again.

Note that for graphics imported by copy, FrameMaker uses the facet name stored with the graphic. The | mpor t H nt
statement is not written for graphics imported by copy.

The record specified by the | npor t Hi nt statement uses the following syntax:

record_vers vendor format _id platformfilter_vers filter_name
Note that the fields in the record are not separated by spaces. For example:

*0001PGRFPICTMACG61.0 Built-in PICT reader’
The rest of this section describes each field in the record.

record_vers is the version on the record (for example, 0001).

vendor is a code specifying the filter’s vendor. The code is a string of four characters. The following table lists some

of the possible codes.
Code Description
‘PGRF' Built-in FrameMaker filters
‘FAPT' External FDK client filter
‘FFLT' External FrameMaker filters

113

Online manual

ADOBE FRAMEMAKER 7.0
MIF Document Statements

Code Description
‘IMAG' External ImageMark filters
*XTND' External XTND filters

Note that this is not a comprehensive list of codes. Codes may be added to this list by Adobe or by developers at your

site.

format _i d is a code specifying the format that the filter translates. The code is a string of four characters. The
following table lists some of the possible codes.

Code Description

‘PICT' QuickDraw PICT

*"WME ' Windows MetaFile

‘EPSF' Encapsulated PostScript (Macintosh)

“EPST' Encapsulated PostScript Interchange

*EPSB' Encapsulated PostScript Binary (Windows)
*EPSD' Encapsulated PostScript with Desktop Control Separations (DCS)
*SNRF' Sun Raster File

‘PNTG' MacPaint

‘PCX ' PC Paintbrush

‘TIFF' Tag Image File Format

‘XWD ' X Windows System Window Dump file

‘GIF' Graphics Interchange Format (CompuServe)
"MIF ' Maker Interchange Format

‘FRMI' Framelmage

‘FRMV' FrameVector

*SRGB' SGI RGB

‘CDR'' CorelDRAW

‘CGM ' Computer Graphics Metafile

‘DRW ' Micrografx CAD

‘DXF ' Autodesk Drawing eXchange file (CAD files)
*GEM ' GEM file (Windows)

‘HPGL' Hewlett-Packard Graphics Language

‘IGES' Initial Graphics Exchange Specification (CAD files)
*“WPG ' WordPerfect Graphics

‘DIB ' Device-independent bitmap (Windows)

‘OLE "' Object Linking and Embedding Client (Microsoft)

Online manual

114

ADOBE FRAMEMAKER 7.0
MIF Document Statements

Code Description

‘EMF ' Enhanced MetaFile (Windows)
*MooV' QuickTime Movie

‘IMG4' Image to CCITT Group 4 (UNIX)
*G4IM' CCITT Group 4 to Image

Note that this is not a comprehensive list of codes. Codes may be added to this list by Adobe or by developers at your
site.

pl at f or mis a code specifying the platform on which the filter was run. The code is a string of four characters. The
following table lists some of the possible codes.

Code Description

"MAC6' Macintosh 68000 series
"MACP' Power Macintosh
"WINT' Windows NT®
*"WIN3' Windows 3.1

"WIN4' Windows 95

*UNIX' Generic X/11 (Sun, HP)

filter_vers isastring of four characters identifying the version of the filter on that platform. For example, version
1.0 of a filter is represented by the string 1.0 ' .

filter_nane isa text string (less than 31 characters long) that describes the filter.

More information about imported graphics

For additional information on imported graphics, consult one of the following sources:

+ For instructions about modifying an application to create graphic insets for FrameMaker documents, see the FDK
Programmer's Guide.

* If you are using FrameServer or Live Links with graphic insets, see the online manual, Using FrameServer with
Applications and Insets, which is included in the UNIX version of the Frame Developer’s Kit.

+ For more information about importing graphics, see your user’s manual.

Math statement

A Mat h statement describes an equation. For its description, see , “MIF Equation Statements.”

Polygon statement

The Pol ygon statement describes a polygon. It can appear at the top level or in a Page or Fr ane statement.

115

Online manual

Syntax

ADOBE FRAMEMAKER 7.0 |116
MIF Document Statements

<Polygon

CGeneric object statenents

Information common to all objects (see page 101)

<Snoot hed bool ean>

Yes smooths angles to rounded curves

<NunPoi nts i nt eger>

Number of vertices

<Point X Y> Position of object in page or frame coordinates
More points as needed
> End of Pol ygon statement
Usage

The NunPoi nt s statement is optional. When the MIF interpreter reads a MIF file, it counts the Poi nt statements to

determine the number of points in the polygon.

PolyLine statement

The Pol yLi ne statement describes a polyline. It can appear at the top level or in a Page or Fr ane statement.

Syntax

<PolyLine

Ceneric object statenents

Information common to all objects (see page 101)

<HeadCap keywor d>

Type of head cap for lines and arcs

keywor d can be one of:
Ar r owHead

But t

Round

Squar e

<Tai | Cap keyword>

Type of tail cap for lines and arcs

keywor d can be one of:
Ar r owHead

But t

Round

Squar e

<ArrowStyl e.>»

See “ArrowStyle statement” on page 106

<Snoot hed bool ean>

Yes smooths angles to rounded curves

<NunPoi nts i nteger>

Number of vertices

<Point X Y>

Position in page or graphic frame coordinates

More points as needed

End of Pol yLi ne statement

Online manual

ADOBE FRAMEMAKER 7.0 |117
MIF Document Statements

Usage

The Pol yLi ne statement is used for both simple and complex lines. A simple line is represented as a Pol yLi ne with
<NunPoi nts 2>. The NunPoi nt s statement is optional. When the MIF interpreter reads a MIF file, it counts the
Poi nt statements to determine the number of points in the polyline.

Rectangle statement
The Rect angl e statement describes rectangles and squares. It can appear at the top level or in a Page or Fr ane
statement.
Syntax
<Rectangle
Ceneric object statenents Information common to all objects (see page 101)
<ShapeRect L T WH> Position and size of object, before rotation,in page or graphic frame coordi-
nates
<Snpot hed bool ean> Yes smooths angles to rounded curves
> End of Rect angl e statement
RoundRect statement

A RoundRect statement describes a rectangle with curved corners. It can appear at the top level or in a Page or Fr ame

statement.
Syntax
<RoundRect
CGeneric object statenents Information common to all objects (see page 101)
<ShapeRect L T WH> Position and size of object, before rotation, in page or graphic frame coordi-
nates
<Radi us di nensi on> Radius of corner; 0=square corner
> End of RoundRect statement
TextLine statement

The Text Li ne statement describes a text line. It can appear at the top level or in a Page or Fr ame statement.

A text line is a single line of text that FrameMaker treats differently from other text. Text lines grow and shrink as
they are edited, but they do not automatically wrap the way text in a text column does. Text lines cannot contain
paragraph formats, markers, variables, cross-references, or elements.

Syntax

<TextLine
CGeneric object statenents Information common to all objects (see page 101)
<TLOrigin X Y> Alignment point origin

Online manual

ADOBE FRAMEMAKER 7.0 | 118
MIF Document Statements

<TLAl i gnnent keywor d> Alignment
keywor d can be one of:
Center
Left
Ri ght

<TLLanguage keywor d> Spell checking and hyphenation language for text line; for list of allowed key-
words, see Pgf Language on page 61

<Char i nteger> Nonprinting ASCII character code

 Embedded font change (see “PgfFont and Font statements” on page 63)

<String string> Printable ASCII text in single quotation marks; required

> End of Text Li ne statement
Usage

The TLOri gi n statement specifies the baseline (Y) and the left, center, or right edge of the text line (X), depending

on TLAI i gnnment . The text line is rotated by the value specified in an Angl e statement. The default angle is 0.

A Text Li ne statement contains one or more St r i ng statements. Each St ri ng statement is preceded by an optional

Font statement. The Char statements provide codes for characters outside the printable ASCII range. You can define
macros that make Char statements more readable, and there are several predefined constants for character values.

(See “Char statement” on page 123.)

TextRect statement

The Text Rect statement defines a text frame. It can appear at the top level or in a Page or Fr ane statement.

Syntax

<TextRect

CGeneric object statenents

Information common to all objects (see page 101)

<ShapeRect L T WH>

Position and size of object, before rotation,in page or graphic frame
coordinates

<TRNext i nteger>

ID of next text frame in flow

<TRNunCol urms i nt eger >

Number of columns in the text frame (1- 10)

<TRCol umGap di nensi on>

Space between columns in the text frame (0" - 50")

<TRCol umBal ance bool ean>

Yes means columnsin the text frame are automatically adjusted to the
same height

<TRSi deheadW dt h di nensi on>

Width of side head area (0" - 50")

<TRSi deheadGp di nensi on>

Gap between side head area and body text area (0" - 50")

<TRSi deheadPl acenent keyword>

Placement of side head in text frame

keywor d can be one of:
Left

Ri ght

I nsi de

Cut si de

Online manual

ADOBE FRAMEMAKER 7.0
MIF Document Statements

<Text Fl ow See “Text flows,” next

> End of Text Rect statement

Usage

A text frame can contain one or more text columns (up to ten text columns). The number of columns and the space
between columns are specified by the TRNunCol unms and TRCol urmGap statements, respectively. The space between
columns cannot exceed 50 inches.

FrameMaker can adjust the height of the text columns to evenly distribute the text in the columns if the TRCol umm-
Bal ance statement is set to Yes.

A text frame also contains the specifications for the placement of side heads. The width and location of the side head
in a text frame are specified by the TRSi deheadW dt h and TRSi deheadPl acenment statements. The side head area
cannot be wider than 50 inches. In the TRSi deheadPl acement statement, the I nsi de and Qut si de settings corre-
spond to the side closer to the binding and the side farther from the binding, respectively. The spacing between the
side head and the text columns in the text frame is specified by the TRSi deheadGap statement. The spacing cannot
exceed 50 inches.

TRNext indicates the ID of the next text frame in the flow. If there is no next Text Rect , use a <TRNext 0> statement
or omit the entire TRNext statement. The text frame is rotated by the value specified in an Angl e statement. The
default angle is 0.

Text flows

Text flows contain the actual text of a FrameMaker document. In a MIF file, text flows are contained in Text Fl ow
statements. Typically, the Text FI ow statement consists of a list of embedded Par a statements that contain
paragraphs, special characters, table and graphic frame anchors, and graphic objects.

When the MIF interpreter encounters the first Text FI ow statement, it sets up a default text flow environment. The
default environment consists of the current text frame, current paragraph properties, and current font properties.
The Text FI owstatement can override all of these defaults.

TextFlow statement

The Text FI owstatement defines a text flow. It can appear at the top level or in a Text Rect statement. It must appear
after all other main statements in the file.

Syntax
<TextFlow
<TFTag tagstring> Text flow tag name
<TFAut oConnect bool ean> Yes adds text frames as needed to extend flows
<TFPost Scri pt bool ean> Yes identifies text in the flow as printer code
<TFFeat her bool ean> Yes adjusts vertical space in column so that last line of text lies against
the bottom of the column
<TFSynchroni zed bool ean> Yes aligns baselines of text in adjacent columns
<TFLi neSpaci ng di mensi on> Line spacing for synchronized baselines

119

Online manual

ADOBE FRAMEMAKER 7.0
MIF Document Statements

<TFM nHangHei ght di nensi on>

Maximum character height for synchronization of first line in column; if
characters exceed this height, FrameMaker doesn’t synchronize the first
line

<TFSi deheads bool ean>

Yes means text flow contains side heads

<TFMax! nt er Li ne di mensi on>

Maximum interline spacing

<TFMaxI nt er Pgf di mensi on>

Maximum interparagraph spacing

<Not es..> Defines a footnote (see “Notes statement,” next)
<Para..> Defines a paragraph (see “Para statement”on page 121)
> End of Text Fl owstatement
Usage

Most MIF generators will put all document text in one Text FI ow statement. However, if there are subsequent

Text FI owstatements, the interpreter assumes they have the same settings (current paragraph format, current font,

and so forth) as the previous text flow.

To divert the flow into a new, unlinked text frame, there must be a Text Rect | D statement in the first Par aLi ne
statement of the new Text Fl owstatement (see page 121). The Text Rect | Dstatement resets the current text frame
definition so subsequent text is placed within the identified text frame; this is necessary only if you want to reset the

text frame defaults.

If the text flow contains side heads, the TFSi deheads statement is set to Yes. The Pgf Pl acenent St yl e statement
(under paragraph properties) identifies the side heads, and the Text Rect statement contains specifications for their

size and placement.

For information about text flow properties, see your user’s manual.

Notes statement

The Not es statement defines all of the footnotes that will be used in a table title, cell, or text flow. It can appear at
the top level or at the beginning of a Thl Ti t | eCont ent, Cel | Cont ent , or Text FI ow statement.

Syntax
<Notes

<FNot e
<ID ID> Unique ID
<Uni que | D> ID, persistent across sessions, assigned when FrameMaker generates a MIF file; used

by the FDK client and should not be used by filters

 Changes font as needed (see “PgfFont and Font statements” on page 63)
<Para..> Footnote text (see “Para statement,” next)
<Para..> Additional statements as needed

> End of FNot e statement

Online manual

120

ADOBE FRAMEMAKER 7.0 | 121
MIF Document Statements

<FNot e..> Additional statements as needed

> End of Not es statement

Usage

Within the document text, footnotes are referred to with the <FNot e | D> statement, where | Dis the ID specified in
the corresponding FNot e statement. See “ParaLine statement” on page 121.

Para statement

The Par a statement defines a paragraph. It can appear in a Text Fl ow, FNot e, Cel | Cont ent , or Tbl Ti t | eCont ent
statement. In simple MIF files without page or document statements (such as the hel | 0. ni f sample file), the Par a
statement can also appear at the top level. It usually consists of a list of embedded Par aLi ne statements that contain
the document text.

Syntax
<Para
<Uni que | D> ID, persistent across sessions, assigned when FrameMaker generates a
MIF file; used by the FDK client and should not be used by filters
<Pgf Tag tagstring> Applies format from Paragraph Catalog
<Pgf ..> Sets current paragraph format (see page 58)
<Pgf NunString string> Paragraph number (contains the actual string)
<Pgf EndCond bool ean> Used only for hidden conditional text; Yes indicates this is the last para-
graphin the current block of conditional text in the HIDDEN text flow (see
page 42)
<Pgf CondFul | Pgf bool ean> Used only for hidden conditional text; Yes indicates paragraph contains
end of current block of hidden text and current block ends with a para-
graph symbol
<Par aLi ne..> See “ParalLine statement,” next
> End of Par a statement
Usage

By default, a paragraph uses the current Pgf settings (the same settings as its predecessor). Optional Pgf Tag and Pgf
statements reset the current format. If there is a Pgf Tag statement, the MIF interpreter searches the document’s
Paragraph Catalog for a Pgf definition with the same tag. If the tag exists, then the Paragraph Catalog’s Pgf
definition is used. If no definition is found in the catalog, the Pgf definition of the previous paragraph is used;
however, its tag string is reset to the tag in the Pgf Tag statement.

ParalLine statement

The Par aLi ne statement defines a line within a paragraph. It must appear in a Par a statement.

Online manual

ADOBE FRAMEMAKER 7.0 | 122
MIF Document Statements

Syntax
<Paraline

<El ement Begin ..> See ,"MIF Statements for Structured Documents and Books.”

<TextRect | D | D> Where the following text goes

<Spcl Hyphenat i on bool ean> Hyphenation of a word at the end of a line causes the word to be
spelled differently, as with German hyphenation

 Embedded character change for the following text (see page 63)

<Condi tional ..> Turns on conditional text (see page 57)

<Uncondi ti onal > Returns to unconditional state

<String string> Printable ASCII text in single quotation marks; required

<Char .> An extended ASCII character code or special character name (see
page 123)

<ATbl | D> ID of embedded table

<AFr anme | D> ID of embedded anchored frame

<FNot e | D> ID of embedded footnote

<Mar ker ..> Embedded marker (see page 123)

<Vari abl e Embedded variable

<Vari abl eNane string> Variable name (see page 80)
<Vari abl eLocked bool ean> Yes means the variable is part of a text inset that obtains its format-

ting information from the source document

> End of Var i abl e statement

<XRef ..> Embedded cross-reference (see page 81)

<XRef End>

<El enent End ..> See ,"MIF Statements for Structured Documents and Books.”

> End of Par aLi ne statement
Usage

A typical Par aLi ne statement consists of one or more St ri ng, Char , ATbl , AFr ame, FNot e, Var i abl e, XRef , and
Mar ker statements that define the contents of the line of text. These statements are interspersed with statements that
indicate the scope of document components such as structure elements and conditional text.

The Vari abl eLocked statement is used for text insets that retain formatting information from the source
document.

If the <Vari abl eLocked Yes> statement appears in a specific variable, that variable is part of a text inset that retains
formatting information from the source document. The variable is not affected by global formatting performed on
the document.

If the <Vari abl eLocked No> statement appears in a specific variable, that variable is not part of a text inset or is
part of a text inset that reads formatting information from the current document. The variable is affected by global
formatting performed on the document.

Online manual

ADOBE FRAMEMAKER 7.0 | 123
MIF Document Statements

For more information about text insets, see “Text insets (text imported by reference)” on page 127.

Char statement

The Char statement inserts an extended ASCII character in a Par aLi ne statement. It must appear in a Par aLi ne,
Text Li ne, or BookXRef statement.

Syntax

<Char keywor d> Preset name for special character (for allowed keywor d values, see “Usage,” next)

Usage

To include an extended ASCII character in a Par aLi ne statement, you must either use a hexadecimal code to
represent the character or use the Char statement with a predefined character name.

For example, you can represent the pound sterling character (£) with the hex code\ xa3 or with the statement <Char
Pound>, as shown in the following example:

<Para
<Paraline
<String ‘the pound sterling'>
<Char Pound>
<String * symbol'>
> # end of ParaLine
> # end of Para
<Para
<ParaLine
<String “the pound sterling \xa3 symbol'>
> # end of ParaLine
> # end of Para
You can use the <Char Har dRet ur n> statement to insert a forced return in a paragraph. The <Char Har dRet ur n>
statement must be the last substatement in a Par aLi ne statement.

<Para
<ParaLine
<String ‘string 1'>
<Char HardReturn>
> # end of ParaLine
<ParaLine
<String “string 2'>
> # end of Paraline
> # end of Para
For a list of character codes, see the Quick Reference for your FrameMaker product. Use the Char statement for a
small set of predefined special characters.

Character name Description
Tab Tab
HardSpace Nonbreaking space

Online manual

ADOBE FRAMEMAKER 7.0 | 124
MIF Document Statements

Character name Description
SoftHyphen Soft hyphen
HardHyphen Nonbreaking hyphen
DiscHyphen Discretionary hyphen
NoHyphen Suppress hyphenation
Cent Cent (¢)

Pound Sterling (£)

Yen Yen (¥)

EnDash En dash (—)
EmDash Em dash (—)
Dagger Dagger (1)
DoubleDagger Double dagger (¥)
Bullet Bullet (%)
HardReturn Forced return
NumberSpace Numeric space
ThinSpace Thin space
EnSpace En space

EmSpace Em space

MarkerTypeCatalog statement

The Mar ker TypeCat al og statement defines the contents of the catalog of user-defined markers for the current
document. A document can have only one Mar ker TypeCat al og statement.

Syntax
<MarkerTypeCatalog
<MTypeNane string> Marker name, as it appears in the Marker Type popup menu of the Marker
dialog box.
>#end of Marker TypeCat al og End of Mar ker TypeCat al og statement
Marker statement

The Mar ker statement inserts a marker. It must appear in a Par aLi ne statement.

For version 5.5 of MIF and later, markers are identified by their names. If you open an earlier version MIF file that
uses markers of type 11 through type 25, the document will show those marker numbers as the marker names. For
MIF version 5.5 or later, My pe numbers are still assigned for backward compatibility, but the assignment of numbers
is fairly arbitrary. If the document includes more than 15 custom markers (Type 11 through Type 25), then the extra
custom markers will be assigned <MType 25>.

Online manual

Syntax

ADOBE FRAMEMAKER 7.0 | 125
MIF Document Statements

<Marker

<Uni que | D>

ID, persistent across sessions, assigned when FrameMaker generates a MIF file; used by
the FDK client and should not be used by filters

<MType i nt eger>

Marker type number (for list of allowed values, see “Usage,” next). Marker type numbers
are not used for the current versions of FrameMaker, but they are included for backward
compatibility

<MTypeNarne string>

Marker name, as it appears in the Marker Type popup menu of the Marker dialog box

<MText string>

Marker text string

<MCur r Page i nt eger >

Current page of marker assigned when FrameMaker generates a file; ignored when
FrameMaker reads or imports a MIF file

End of Mar ker statement

Usage

Marker type numbers correspond to the marker names in the Marker window as follows.

This number

Represents this marker name

0 Header/Footer $1
1 Header/Footer $2
2 Index

3 Comment

4 Subject

5 Author

6 Glossary

7 Equation

8 Hypertext

9 X-Ref

10 Conditional Text

11 through 25

Type 11 through Type 25, for versions of FrameMaker earlier than 5.5.1f more than 25 markers
are defined for the document, all extra markers are assigned the number 25.

In UNIX versions, you can change the default marker names. For more information, see the online manual, Custom-

izing FrameMaker.

XRef statement

The XRef statement marks a cross-reference in text. It must appear in a Par aLi ne statement.

Syntax

<XRef

Online manual

ADOBE FRAMEMAKER 7.0 | 126
MIF Document Statements

<Uni que | D>

ID, persistent across sessions, assigned when FrameMaker gener-
ates a MIF file; used by the FDK client and should not be used by
filters

<XRef Nane tagstring>

Name of cross-reference format (see “XRefFormats and XRefFor-
mat statements” on page 81)

<XRef Last Updat e seconds microseconds>

Specifies the time when the cross-reference was last updated; time
is measured in the number of seconds and microseconds that have
passed since January 1,1970

<XRef Locked bool ean>

Yes means the cross-reference is part of a text inset that obtains
its formatting information from the source document

<XRef SrcText string>

Text to search for

<XRef Sr cl sEl em bool ean>

Yes means the source of the cross-reference is an element from a
structured document

<XRef SrcFi | e pat hname>

Device-independent pathname of file in which to search for source
text (for pat hname syntax, see page 8)

>

End of XRef statement

 Embedded character change for the following cross-reference text

(see page 63)

<String string> Text of cross-reference

<XRef End> End of cross-reference

Usage

The XRef statement marks where a cross-reference appears in text. The XRef Nane statement applies a format to the
cross-reference text; its string argument must match the name of the format provided by an XRef For mat statement.

The XRef Sr cText statement identifies the cross-reference source. If the source text is in a separate file, the XRef S-
r cFi | e statement provides a device-independent filename. You can omit it or give it an empty string argument if
the cross-reference source is in the same file.

The XRef End statement marks the end of the cross-reference.

Any St ring or Char statements between the XRef and XRef End statements represent the actual text of the cross-
reference. These intermediary statements are optional.

For an example of a cross-reference in MIF, see “Creating cross-references” on page 36.
The XRef Locked statement is used for text insets that retain formatting information from the source document.

If the <XRef Locked Yes> statement appears in a specific cross-reference, that cross-reference is part of a text inset
that retains formatting information from the source document. The cross-reference is not affected by global
formatting performed on the document.

If the <XRef Locked No> statement appears in a specific cross-reference, that cross-reference is not part of a text
inset, or is part of a text inset that reads formatting information from the current document. The cross-reference is
affected by global formatting performed on the document.

For more information about text insets, see “Text insets (text imported by reference),” next.

Online manual

ADOBE FRAMEMAKER 7.0 |127
MIF Document Statements

Text insets (text imported by reference)

In a FrameMaker document, text can be imported by reference from another file. When the text in the original file
is modified, the imported text in the FrameMaker document is updated with changes. Text imported by reference is
called a text inset. In a MIF file, text insets are defined by the Text | nset statement.

A Text I nset statement appears in the Par aLi ne statement representing the location of the text being imported.
When text is imported by reference, the resulting text inset can be formatted either as regular text or as a table.

The source file (from which the text is imported) can be a FrameMaker document or any other kind of text file. The
source file can also be a file that is created, maintained, and updated by an FDK client (a program created with the
Frame Developer’s Kit.

On Macintosh platforms, the source file can also be a published edition. In this case, text can be imported by
reference by subscribing to the edition.

TextInset statement

The Text I nset statement defines text that has been imported by reference. A Text | nset statement appears in a
Par aLi ne statement.

Syntax
<Textlnset

<Uni que num> Unique ID number assigned by FrameMaker

<Ti Nane string> Specifies a name for the text inset that may be assigned by an FDK
client or by this statement in a MIF file; FrameMaker does not auto-
matically assign a name for the text inset

<TiSrcFile pathname> Specifies the source file with a device-independent filename (for
pat hname syntax, see page 8)

<Ti Aut oUpdat e boolean> Yes specifies that the text inset is updated automatically when
the source file changes

<Ti Last Updat e seconds microseconds> Specifies the time when the text inset was last updated; time is
measured in the number of seconds and microseconds that have
passed since January 1,1970

<Ti MacEditi onld integer> For a text inset created from a Macintosh edition, points to the
resource ID of the sect and al i s records

<TilnportHi nt string> Identifies the filter used to convert the file (see “Record of the filter
used to import text” on page 128)

<TiApiClient ...> Identifies the text inset as one created and maintained by an FDK

client (see “TiApiClient statement” on page 130)

<Ti Flow ..> Identifies the text inset as an imported text flow from another doc-
ument (see “TiFlow statement” on page 131)

<Ti Text .> Identifies the text inset as an imported text file (see “TiText state-
ment”on page 132)

<Ti Text Tabl e .>» Identifies the text inset as text imported into a table (see “TiTextTa-
ble statement” on page 132)

> End of Text | nset statement

Online manual

ADOBE FRAMEMAKER 7.0
MIF Document Statements

.(Free-formtext) Par a statements containing and describing the imported text
(see “Para statement” on page 121)
<Text | nset End> End of imported text
Usage

All text insets require information about the source file and the imported text. The information is used to update the
text inset when changes are made to the original file.

There are several different types of text insets. The type of the text inset is identified and described by a substatement:

* Text created and maintained by an FDK client is described by the Ti Api C i ent substatement. For information
on the statement, see the section “TiApiClient statement” on page 130.

* A text flow imported from another FrameMaker document or from a document filtered by FrameMaker is
described by the Ti FI owsubstatement. For information on the statement, see the section “TiFlow statement” on
page 131.

+ Plain text imported by reference is described by the Ti Text substatement. For information on the statement, see
the section “TiText statement” on page 132.

* Text imported into a tabular format is described by the Ti Text Tabl e substatement. For information on the
statement, see the section “TiTextTable statement” on page 132.

Usage of some of the aspects of the Text | nset statement is described in the following sections.

Text insets created with Publish and Subscribe

Macintosh versions of FrameMaker support text and graphics Publish and Subscribe, which allows applications to
share information dynamically between FrameMaker documents.

You make text and graphics information available by creating a publisher. This creates a separate file, called an edition,
on disk. You can place a copy of the edition, called a subscriber, in a document, even if the edition is on another disk
or on another Macintosh on a network.

In MIF, subscribers and publishers are described by different statements.

* Subscribers to text editions are described by Text I nset statements.

* Subscribers to graphics editions are described by | npor t Obj ect statements (see “ImportObject statement” on
page 110).

* Publishers are described by Dat aLi nk statements (see “Publishers” on page 133).

If a text inset is created by subscribing to an edition, the Ti MacEdi ti onl d statement provides information for
compatibility with Macintosh standards; i nt eger points to the resource ID for the sect and al i s resources in the
resource fork. This information is replicated inside the MIF description, but the information in the resource fork
takes precedence over the MIF data. If this field is missing, it uses the filename specified in the Ti Sr cFi | e statement.
For more information, see the chapter on Edition Manager in Inside Macintosh, Volume V1.

If the source document for a text inset is not an edition, the Ti MacEdi ti onl d statement is set to 0.

Record of the filter used to import text

The Text I nset statement contains a record to identify the filter that was used to import text by reference.
FrameMaker uses the record to find the correct filter to use when updating the text inset.

The record is specified in the Ti | npor t Hi nt statement and uses the following syntax:

128

Online manual

record_vers vendor format_id platformfilter_vers filter_name

Note that the fields in the record are not separated by spaces. For example:

*000IXTNDWDBNMACP0002MS Word 4,5'
In this example, 0001 is the record version; XTND is the vendor; WDBN is the format id; MACP is the platform; 0002 is
the filter version; and M5 Wor d 4, 5 is the filter name. The rest of this section describes each field in the record.

record_vers is the version on the record (for example, 0001).

ADOBE FRAMEMAKER 7.0 | 129

MIF Document Statements

vendor is a code specifying the filter’s vendor. The code is a string of four characters. The following table lists some

of the possible codes.

Code Description

‘PGRF' Built-in FrameMaker filters
‘FAPT' External FDK client filter
‘FFLT' External FrameMaker filters
‘IMAG' External ImageMark filters
*XTND' External XTND filters

Note that this is not a comprehensive list of codes. Codes may be added to this list by Adobe or by developers at your

site.

format _i d is a code specifying the format that the filter translates. The code is a string of four characters. The
following table lists some of the possible codes.

Code Description

*WDBN' Microsoft Word compound document
*WPBN' WordPerfect compound document
‘RTF ' Microsoft’s RTF compound document
‘TIAF ' Interleaf compound document

*MIF ' Maker Interchange Format

*MRTF' MIF to RTF export

*MIAF' MIF to IAF export

*“MWPB' MIF to WordPerfect export

*TRFF' t rof f to MIF (UNIX only)

“TRFA' troff -man toMIF (UNIX only)
*TRFE' troff -ne toMIF (UNIX only)
*TRES' troff -ns toMIF (UNIX only)
*MML ' Maker Mark-up Language

*CVBN' Corel Ventura compound document (Windows)
‘DCA' DCA to MIF (UNIX)

‘TEXT' Plain text

Online manual

ADOBE FRAMEMAKER 7.0 | 130
MIF Document Statements

Code Description
*TXIS' Text ISO Latin 1
‘TXRM' Text Roman 8

Note that this is not a comprehensive list of codes. Codes may be added to this list by Adobe or by developers at your
site.

pl at f or mis a code specifying the platform on which the filter was run. The code is a string of four characters. The
following table lists some of the possible codes.

Code Description

"MAC6' Macintosh 68000 series
"MACP' Power Macintosh
"WINT' Windows NT

*WIN3' Windows 3.1

"WIN4' Windows 95

*UNIX' Generic X/11 (Sun, HP)

filter_vers isastring of four characters identifying the version of the filter on that platform. For example, version
1.0 of a filter is represented by the string 1.0 ' .

filter_nane isa text string (less than 31 characters long) that describes the filter.

TiApiClient statement

The Ti Api O i ent statement defines a text inset created and maintained by an FDK client application.

Syntax
<TiApiClient
<Ti dient Nane string> Specifies the name used to register the FDK client application with FrameMaker
<Ti d i ent Sour ce 5tring> Specifies the location of the source file for the text inset
<Ti dientType string> Specifies the type of the source file
<TidientData string> Specifies additional data that can be used by an FDK client (for example, SQL
query information)
> End of Ti Api Cl i ent statement
Usage

When updating text insets, the FDK client can use the Ti O i ent Name substatement to determine if it should update
a given text inset.

If the FDK client requires additional information, the client can store the information in the Ti O i ent Dat a
substatement. For example, if the FDK client queries a database for text, the SQL query can be stored in the Ti C i -
ent Dat a substatement.

Online manual

TiFlow statement

ADOBE FRAMEMAKER 7.0 | 131
MIF Document Statements

The Ti FI owstatement defines a text flow that is imported by reference from a FrameMaker document or a MIF file.

The statement also defines imported text from other formatted documents that FrameMaker can filter (for example,

a Microsoft Word document).

Syntax

<TiFlow

<Ti

Formatting keyword>

Specifies which document formats are used for the text inset

keywor d can be one of:
Ti Sour ce

Ti Encl osi ng

Ti Pl ai nText

<Ti

Mai nFl ow boolean>

Yes specifies that the text inset is imported from the main flow of
the source document; NO specifies that the text inset is imported
from a different flow

<Ti

PageSpace keyword>

If the text inset is not imported from the main flow, specifies
whether the text inset is imported from a flow in the body page or
the reference page of the source document

keywor d can be one of:
BodyPage
Ref er encePage

<Ti

Fl owName string>

If the text inset is not imported from the main flow, specifies the
tag of the flow to import; if the source file is an edition, set to
“Macintosh edition'

<Ti

For mat RenoveQOverri des boolean>

When reformatting to use the current document’s formats, Yes
specifies that format overrides are removed

<Ti

For mat RenovePageBr eaks boolean>

When reformatting to use the current document’s formats, Yes
specifies that manual page breaks are removed

End of Ti Fl owstatement

Usage

If the imported text flow is not the main flow of the source document, the Ti PageSpace and Ti FI owNane substate-

ments identify the flow in the source document that serves as the imported text flow.

Text imported from another document can obtain formatting information from the original document (if the

Ti For mat t i ng statement is set to Ti Sour ce) or from the current document (if the Ti For mat t i ng statement is set
to Ti Encl osi ng):

o If the imported text flow is reformatted to use the current document’s formats, the Ti For mat RenoveOver ri des
substatement specifies whether or not format overrides in the text are removed, and the Ti For mat RenovePage-
Br eaks substatement specifies whether or not manual page breaks in the text are removed.

« If the imported text flow retains the formatting of the source document, the paragraph, character, table, variable,

and cross-reference formats used in the inset are marked with special MIF statements to indicate that these

formats should not be affected by global updates. These statements are Pgf Locked, FLocked, Thl Locked, Vari a-
bl eLocked, and XRef Locked, respectively. The MIF statements appear under the descriptions of these formats.

Plain text formatting can also be used, if the Ti For mat t i ng statement is set to Ti Pl ai nText .

Online manual

TiText statement

ADOBE FRAMEMAKER 7.0 | 132
MIF Document Statements

The Ti Text statement defines a text file imported by reference. It appears in a Text | nset statement.

Syntax

<TiText

<Ti EQLi SEOP boolean>

Yes specifies that the end of the line marks the end of a paragraph; No specifies
that a blank line identifies the end of a paragraph

<Ti Txt Encodi ng keywor d>

Specifies the text encoding for the source file

keywor d can be one of:
TilsoLatin
Ti ASCl |

Ti ANSI

Ti MacASCl |
TiJIS
TiShiftJls
Ti EUC

Ti Bi g5

TI EUCCNS
Ti GB

Ti HZ

Ti Kor ean

End of Ti Text statement

TiTextTable statement

The Ti Text Tabl e statement defines imported text formatted as a table. It appears in a Text | nset statement.

Syntax

<TiTextTable

<Ti Tbl Tag string>

Specifies the name of the table format used for the table

<Ti Thl I sByRow boolean>

Yes specifies that each paragraph in the imported text is converted
to a row of table cells; No specifies that each paragraph in the
imported text is converted to a table cell

<Ti Tbl NunCol s num>

If each paragraph is converted to a separate cell, specifies the num-
ber of columns in the table

<Ti Tbl Sep string>

If each paragraph is converted to a row of cells, specifies the charac-
ter used to indicate the contents of each cell

<Ti Tbl NunSep nun®>

If characters are used to indicate the contents of each cell, specifies
the number of these characters used as a single divider

<Ti Tbl NumHdr Rows nun®

Specifies the number of heading rows in the table

<Ti Thl Header sEnpty boolean>

Yes indicates that the imported text is not inserted in the heading
rows

Online manual

ADOBE FRAMEMAKER 7.0
MIF Document Statements

<Ti Tbl Txt Encodi ng keywor d> Specifies the text encoding for the source file

keywor d can be one of:
TilsoLatin
Ti ASCI |

Ti ANSI

Ti MacASCI |
TiJIS

Ti ShiftJI's
Ti EUC

Ti Bi g5

TI EUCCNS
Ti GB

Ti HZ

Ti Kor ean

> End of Ti Text Tabl e statement

Usage

When imported text is converted to a tabular format, each paragraph can be converted into either a cell or a row of
cells:

+ If each paragraph is converted to a table cell, the Ti Tbl | sByRowsubstatement is set to No. The number of columns
in the table is specified by the Ti Thl NunCol s substatement.

* If each paragraph is converted to a row of cells, the Ti Thl | sByRowsubstatement is set to Yes. The character used
in the imported text to delimit the contents of each cell is specified by the Ti Thl Sep substatement, and the
number of these characters used as a single divider is specified by the Ti Tbl NunSep substatement.

* For example, if the imported text uses a single tab character to distinguish the contents of one table cell from the
next, the following substatements are used:

<TiTblSep “\t'>

<TiTbINumSep 1>

* Asanother example, if the imported text uses two spaces to distinguish the contents of one table cell from the next,
the following substatements are used:

<TiTblSep * '>

<TiTbINumSep 2>

If the Ti Tbl NunHdr Rows substatement is not set to 0, the table has header rows. If the Ti Thl Header sEnpt y

substatement is set to No, these rows are filled with imported text.

Publishers

Macintosh versions of FrameMaker support text and graphics Publish and Subscribe, which allows applications to
share information dynamically between FrameMaker documents. You can make text information available by desig-
nating it a publisher. A separate file, called an edition, is created on disk. You can place a copy of the edition, called a
subscriber, in a document, even if the edition is on another disk or on another Macintosh on a network.

FrameMaker treats subscribed text as text insets. Subscribed text is specified through the Text I nset statement.
Published text is specified through a different MIF statement, the Dat aLi nk statement.

For more information on subscribers and text insets, see “Text insets (text imported by reference)” on page 127.

133

Online manual

DatalLink Statement

ADOBE FRAMEMAKER 7.0 | 134
MIF Document Statements

The Dat aLi nk statement defines a text publisher. It is embedded along with the lines of text where the link occurs.

The Dat aLi nk statement occurs in a Par aLi ne statement.

Syntax

<DataLink

<DLSour ce pathname>

Specifies the edition with a device-independent filename

<DLQut Yes>

Yes specifies that the statement describes a publisher

<OnelLi nePer Rec bool ean>

Yes treats returns as paragraphs (one line per paragraph); No treats
returns as line breaks

<MacEdi tion integer>

Points to the resource ID of the sect and al i s records

Ends the Dat aLi nk statement

.(Free-formtext)

Par a statements containing and describing the published text (see
“Para statement” on page 121)

<Dat aLi nkEnd>

End of the published text

Usage

The MacEdi ti on statement provides information for compatibility with Macintosh standards for creating edition

manager documents; i nt eger points to the resource ID for the sect and al i s resources in the resource fork. This

information is replicated inside the MIF description, but the information in the resource fork takes precedence over
the MIF data. If this field is missing, the MacEdi t i on statement uses the filename in the DLSour ce statement. For
more information, see the chapter on Edition Manager in Inside Macintosh, Volume VI.

Online manual

MIF Book File Statements

135

MIF book file overview

The following table lists the main statements in a MIF book file in the order that FrameMaker writes them. You
should follow the same order that FrameMaker uses, with the exception of the macro statements and control state-
ments, which can appear anywhere at the top level of a file. Each statement, except the Book statement, is optional.

Most main statements use substatements to describe objects and their properties.

Section

Description

Book

Labels the file as a MIF book file. The Book statement is required and must be the
first statement in the file.

Macro statements

Defines macros with a def i ne statement and reads in files with ani ncl ude
statement.These statements can appear anywhere at the top level.

Control statements

Establishes the default units in a Uni t s statement, the debugging setting in a
Ver bose statement,and comments in a Conment statement.These statements
can appear anywhere at the top level.

BWindowRect

Specifies position of book window on the screen.

View only statements

Specify whether the book is View Only,and how to display View Only book windows

BDisplayText

Specifies the type of text to display in the book window for each book component
icon

PDF statements

Specify document info entries and how to handle named destinations when you
save the book as PDF

BookComponent

Provides the setup information for each file in the book.

Color Catalog

The color definitionss of each document in the book.

Condition Catalog

Defines the condition tags of each document in the book.

Combined Font Catalog

Defines the combined fonts of each document in the book.

FontCatalog

Defines the character formats of each document in the book.The Font Cat al og
statement contains a series of FONt statements that define the tags that appear in
the Character Catalog of generated files.

PgfCatalog

Defines the paragraph formats of each document in the book.The Pgf Cat al og
statement contains a series of Pgf statements that define the tags that appear in
the Include and Don't Include scroll lists of the setup dialog boxes for generated
files.

BookXRef

Names and defines the book’s internal cross-references.The Book XRef statement
contains cross-reference definitions in XRef Def statements, cross-reference text
in XRef Sr c Text statements,and the source filename in XRef Sr cFi | e state-
ments.

BookUpdateReferences

Specifies whether or not cross-references and text insets are automatically updated
when the book file is opened.

Online manual

ADOBE FRAMEMAKER 7.0 | 136
MIF Book File Statements

MIF book file identification line

The MIF book file identification line must be the first line of the file with no leading white space.

Syntax

<Book versi on> # comrent

The ver si on argument indicates the version number of the MIF language used in the file, and coment is a comment
showing the name and version number of the program that generated the file.

For example, a MIF book file saved in version 7.0 of FrameMaker begins with the following line:

<Book 7.00> # Generated by version 7.0 of FraneMaker
MIF is compatible across versions, so a MIF interpreter should be able to parse any MIF file, although the results can
sometimes differ from the user’s intentions.

A MIF book file identification line is the only statement required in a MIF book file.

Book statements

A MIF file for a book contains statements specific to books (BW ndowRect , BookConponent , BookXRef , and
BookUpdat eRef er ences), plus the following statements, which can also occur in a MIF file for a document:
Conment , Uni t s, Ver bose, Pgf Cat al og, and Font Cat al og, Col or Cat al og, and Condi ti onCat al og.

BWindowRect statement

The BW ndowRect statement defines the position of the book window on the screen. It can appear anywhere in the
file but normally appears just after the Book statement.

Syntax

<BWindowRect X Y W H> Book window placement on screen

PDF statements

The PDFBookI nf o statement specifies the information to include in the Document Info dictionary when you save
the book as PDF. Each data entry consists of one Key statement, followed by at least one Val ue statement; you can
include as many Val ue statements as you like. FrameMaker ignores any Key that does not have at least one Val ue

following it. MIF does not represent entries for Cr eat or, Creati on Dat e, or Modi fi cation Date.

For additional information and an example of the syntax for the Key and Val ue statements, see “PDF Document Info”
on page 82

Online manual

Syntax

ADOBE FRAMEMAKER 7.0 |137
MIF Book File Statements

<PDFBookInfo

Specifies the information that appears in the File Info dictionary when you save the book as PDF

Each Document Info entry consists of one Key statement followed by at least one Val ue statement.

<Key string>

A string of up to 255 ASClI characters that represents the name of a Document Info field; in PDF the
name of a File Info field must be 126 characters or less.

Represent non-printable characters via #HH where # identifies a hexadecimal representation of a
character,and HHis the hexadecimal value for the character. For example, use #23 to represent the
“#" character. Zero-value hex -codes (#00) are illegal.

For more information, see”PDF Document Info” on page 82.

<Value string>

A string of up to 255 ASClI characters that represents the value of a Document Info field; because a sin-
gle MIF string contains no more than 255 ASCII characters, you can use more than one Val ue state-
ment for a given Key

A Value can include Unicode characters; represent Unicode characters via &#x HHHH; , where &#x
opens the character code, the”;” character closes the character code,and HHHHare as many hexadec-
imal values as are required to represent the character.

For more information, see “PDF Document Info” on page 82.

You can repeat paired groupings of Key and Val ue statements

End of PDFBook | nf o statement

The BookFi | el nf ostatement stores encoded packets of information (XMP data) that corresponds with values of
fields in the File Info dialog box. This statement can only appear in the Book statement.

Syntax®

<BookFilelnfo>

Specifies the same information that appears in
<PDFBook| nf 0>,except it expresses these values as encoded
data.You should not try to edit this data.

BookFilelnfo also represents the values of the default fields for
Creator,Creation Date,and Met aDat a Dat e.

For more information, see “Document File Info” on page 82.

<encoded> XMP information as encoded data which is generated by
FrameMaker. This information corresponds to the values set in
the File Info dialog box. For any book, there can be an arbitrary
number of XMP statements.
> End of BookFilelnfo
XML book statements

In versions 7.0 and later, FrameMaker supports XML import and export. The following statements store information
necessary to properly save a book as XML.

Syntax
<BXmlVersion string> The XML version that was specified in the XML declaration when the
XML file was opened
<BXmlEncoding string> The XML encoding parameter that was specified in the XML declara-

tion when the XML file was opened

Online manual

ADOBE FRAMEMAKER 7.0
MIF Book File Statements

<BXmlStandAlone int>

The XML standalone parameter that was specified in the XML declara-
tion when the XML file was opened—determines whether or not the
XML document requires a DTD

<BXmlStyleSheet string>

The path or URI to the stylesheet that was specified for the XML file,
plus the type parameter specifying the type of stylesheet

View only book statements

In versions 6.0 and later, a book can be View Only. The following statements indicate whether the book is View Only,
and how to display the book window when it is View Only.

Syntax

<BViewOnly boolean>

Yes specifies View Only book (locked)

<BViewOnlyWinBorders boolean>

No suppresses display of scroll bars and border buttons in book win-
dow of View Only book

<BViewOnlyWinMenubar boolean>

No suppresses display of book window menu bar in View Only book (
Unix only)

<BViewOnlyPopup boolean>

No suppresses display of book context menus in View Only book

<BViewOnlyNoOp 0xnnn>

Disables a command in a View Only document; command is specified
by hex function code (see page 47)

BDisplayText statement

The BDi spl ayText statement defines the the type of text to display in the book window next to the book component
icons. It can appear anywhere in the file but normally appears just after the book’s View Only statements.

Syntax

<BWindowRect X Y W H>

Book window placement on screen

<BDisplayText keyword>

The type of text to display next to component icons in the book window;
keywor d can be one of:

AsFi | enane; displays the filename of the book component in the
book window.

AsText ; displays a text snippet from the first paragraph of the com-
ponent in the book window

BookComponent statement

The BookConponent statement contains the setup information for a document or generated file in a book. The
BookConponent statements must precede all other statements that represent book content. The order of BookCom
ponent statements determines the order of the documents in the book.

You specify the setup information as substatements nested within the overall book component statement. A

BookConponent statement doesn’t need all these substatements, which can occur in any order. A Book Conponent
statement can contain one or more Der i veTag statements.

Online manual

138

Syntax

ADOBE FRAMEMAKER 7.0 | 139
MIF Book File Statements

<BookComponent

Book components

<FileName pathname>

A document or generated file in the book (for pathname syntax, see
page 8)

<DisplayText string>

The text to display in the book window next to the icon for this compo-
nent; FrameMaker displays this text when BDi spl ay Text is set to
AsText (see “<BDisplayText keyword>"on page 138)

Generated components

<FileNameSuffix string>

Filename suffix added to generated file

<DeriveType keyword>

Type of generated file

keywor d can be one of:
AM_ (alphabetic marker list)
APL (alphabetic paragraph list)
| DX (index)

| OA (author index)

| OM(index of markers)

| OS (subject index)

| R(index of references)

L OF (list of figures)
LOM(list of markers)

LOP (list of paragraphs)
LOT (list of tables)

LR (list of references)

TOC (table of contents)

<DeriveTag tagstring>

Tags to include in generated file

<DeriveLinks boolean>

Yes automatically creates hypertext links in generated files

Book component pagination and numbering properties

<StartPageSide keyword>

The page side on which to start

keywor d can be one of:
ReadFr onFi | e (default)
Next Avai | abl eSi de
Start Left Side
Start Ri ght Si de

Volume numbering

<VolumeNumStart integer>

Starting volume number

<VolumeNumStyle keyword>

Style of volume numbering

keywor d can be one of:
Ar abi c
UCRoman
LCRonman

UCAI pha

LCAl pha

Kanj i Nuneric
ZenAr abi c
ZenUCAl pha
ZenLCAl pha
Kanj i kazu
Busi nessKazu
Cust om

<VolumeNumText string>

When Vol umeNunst yl e is set to Cust omthis is the string to use

Online manual

ADOBE FRAMEMAKER 7.0 | 140
MIF Book File Statements

<VolNumComputeMethod keyword>

Volume numbering

keywor d can be one of:

St art Nunber i ng (restart numbering)

Cont i nueNunber i ng (continue numbering from previous compo-
nent)

UseSaneNunber i ng (use the same numbering as previous compo-
nent)

ReadFr onfFi | e (use numbering set for the component’s document)

Chapter numbering

<ChapterNumStart integer>

Starting chapter number

<ChapterNumStyle keyword>

Style of chapter numbering

keywor d can be one of:
Ar abi c
UCRonman
LCRoman

UCAI pha

LCAl pha

Kanj i Nuneric
ZenAr abi c
ZenUCAl pha
ZenLCAl pha
Kanj i kazu
Busi nessKazu
Custom

<ChapterNumText string>

When Chapt er Nunt yl e is set to Cust omthis is the string to use

<ChapterNumComputeMethod keyword>

Chapter numbering

keywor d can be one of:

St art Nunber i ng (restart numbering)

Cont i nueNunber i ng (continue numbering from previous compo-
nent)

UseSaneNunber i ng (use the same numbering as previous compo-
nent)

ReadFr onfi | e (use numbering set for the component’s document)

Page numbering

<ContPageNum boolean>

Yes continues page numbering from the previous file in the book

<PageNumStart integer>

Starting page number

<PageNumStyle keyword>

Style of page numbering

keywor d can be one of:
Ar abi c
UCRoman
LCRoman

UCAI pha

LCAl pha

Kanj i Nuneric
ZenAr abi c
ZenUCAl pha
ZenLCAl pha
Kanj i kazu
Busi nessKazu

Online manual

ADOBE FRAMEMAKER 7.0 | 141
MIF Book File Statements

<PageNumbering keyword>

Page numbering

keyword can be one of:
Cont i nue (default)
Rest art
ReadFronFil e

Paragraph numbering

<PgfNumbering keyword>

Paragraph numbering

keyword can be one of:
Cont i nue (default)
Rest art
ReadFronFil e

Footnote numbering

<BFNoteStartNum integer>

Starting number for footnote numbering

<BFNoteNumStyle keyword>

Style of footnote numbering

keywor d can be one of:
Arabi c
UCRoman
LCRoman

UCAI pha

LCAl pha

Kanj i Nuneri c
ZenAr abi c
ZenUCAl pha
ZenLCAl pha
Kanj i kazu
Busi nessKazu
Cust om

<BFNoteLabels string>

When BFNot eNunt y| e is set to Cust omthis is the string to use

<BFNoteComputeMethod keyword>

Footnote numbering

keywor d can be one of:

Cont i nue (continue numbering from previous component in book)
Rest art (restart numbering;typically to restart per flow,according to
BFNot eRest art setting)

Per Page (restart footnote numbering for each page; overrides
BFNot eRest art setting)

ReadFr onFi | e (use numbering set for the component’s document)

<BFNoteRestart keyword>

When to restart numbering, if BFNot e Conput eMet hod is set to
Rest art

keywor d can be one of:
Per Fl ow(restart footnote numbering for each flow in the document
Per Page (restart footnote numbering for each page)

Online manual

ADOBE FRAMEMAKER 7.0 | 142
MIF Book File Statements

Table footnote numbering

<BTblFNoteNumStyle keyword>

Style of table footnote numbering

keywor d can be one of:
Ar abi c
UCRoman
LCRoman

UCAI pha

LCAl pha

Kanj i Nuneric
ZenAr abi c
ZenUCAl pha
ZenLCAl pha
Kanj i kazu
Busi nessKazu
Custom

<BTblFNoteLabels string>

When BThl FNot eNuntt yl e is set to Cust omthis is the string to
use

<BTblFNoteComputeMethod keyword>

Table footnote numbering; either value causes the component to read
the numbering style from its document

keywor d can be one of:

Rest art (use numbering style specified in the component)

ReadFr onFi | e (use numbering style set for the component’s docu-
ment)

Book component defaults

<DefaultPrint boolean>

Yes adds file to Print scroll list in Print Files in Book dialog box (file is
printed); saved for compatibility with versions earlier than 6.0

<DefaultApply boolean>

Yes adds file to Update scroll list in the Import Formats dialog box (file
is updated); saved for compatibility with versions earlier than 6.0

<DefaultDerive boolean>

Yes adds file to Generate scroll list in the Generate/Update Book dialog
box

<NumPages integer>

The number of pages in the components document, as calculated the
last time the book was updated

End of BookConponent statement

BookXRef statement

The BookXRef statement defines the cross-reference formats for the book.

Syntax

<BookXRef

<XRefDef string>

Cross-reference format definition

<XRefSrcText string>

Text for which to search

<XRefSrcIsElem bool ean>

Yes means the source of the cross-reference is an element from a
structured document

<XRefSrcFile pat hname>

File in which to search for source text (for pat hnane syntax, see
page 8)

End of Book XRef statement

Online manual

ADOBE FRAMEMAKER 7.0 | 143
MIF Book File Statements

BookUpdateReferences statement
The BookUpdat eRef er ences statement specifies whether or not cross-references and text insets are automatically

updated when the book file is opened.

Syntax

<BookUpdateReferences bool ean> Yes specifies that cross-references and text insets are automati-
cally updated when the book file is opened

Online manual

‘144

MIF Statements for Structured Documents
and Books

This chapter describes the MIF statements that define structured documents created with FrameMaker. For more
information about creating and editing structured documents, see the FrameMaker User Guide.

Structural element definitions

A structured document is divided into logical units called structural elements. Elements have tags (or names) that
indicate their role in the document. For example, a document might contain Section, Para, List, and Item elements.
Each element has a definition that specifies its valid contents (such as text and graphics). A structured template
specifies a document’s elements, and the correct order of elements and text in the document.

There are two basic groups of structure elements:

» Containers, tables and footnotes, which can hold text and other elements.

* Object elements, such as graphic frames, equations, markers, system variables, and cross-references. An object
element holds one of its specified type of object and nothing more.

Tables belong to both groups of elements. Although they can contain other elements (table parts such as rows and

cells), tables are also object elements.

In a MIF file, an element definition is defined by an El enent Def statement. Element definitions are stored in the
Element Catalog, which is defined by the El enment Def Cat al og statement. Within a text flow, elements are indicated
by El ement Begi n and El enent End statements.

When FrameMaker reads a MIF file that does not support structure, they strip MIF statements for structure, such as
El ement Begi n, El ement End, and El ement Def Cat al og statements.

ElementDefCatalog statement

The El ement Def Cat al og statement defines the contents of the Element Catalog. A document or book file can have
only one El enent Def Cat al og statement which must appear at the top level in the order given in “MIF file layout”

on page 11.

Syntax

<ElementDefCatalog Begin Element Catalog
<El enent Def ..> Defines an element (see “ElementDef statement,” next)
<El enent Def ..> Additional statements as needed

> End of El enent Def Cat al og statement

Online manual

ElementDef statement

ADOBE FRAMEMAKER 7.0 | 145
MIF Statements for Structured Documents and Books

The El enent Def statement creates an element definition, which specifies an element’s tag name, content rules, and

optional format rules. It must appear within an El enent Def Cat al og statement.

Syntax

<ElementDef

Begin element definition

<EDTag tagstring>

Element tag name

<EDObj ect keywor d>

Type of formatter object represented by the element

keywor d can be one of:
EDCont ai ner
EDEquat i on

EDFoot not e

EDGr aphi ¢

EDMar ker

EDTabl e

EDTbl Title

EDTbl Headi ng
EDTbl Body

EDTbl Footi ng
EDTbl Row

EDTbI Cel |

EDSyst enVari abl e
EDXRef

EDCont ai ner identifies a container element; all other values
identify object (non-container) elements

<EDVal i dHi ghest Level bool ean>

Yes indicates element can be used as the highest level element
for a flow; only a container element is allowed to be the highest
level element

<EDGener al Rul e string>

The general rule for the element; the following types of elements
can have general rules: containers, tables, table parts (table titles,
headings, bodies, footings, rows, and cells), and footnotes

<EDExcl usi ons

List of excluded elements

<Excl usi on tagstring>

Tag of excluded element

<Excl usi on tagstring>

Additional statements as needed

>

End of EDEXcl usi ons statement

<EDI ncl usi ons

List of included elements

<l ncl usi on tagstring>

Tag of included element

<l ncl usi on tagstring>

Additional statements as needed

>

End of EDI ncl usi ons statement

<EDAl sol nsert

List of elements that are automatically inserted in a container ele-
ment when the element is initially added

<Al sol nsert tagstring>

Tag of inserted element

Online manual

ADOBE FRAMEMAKER 7.0 | 146
MIF Statements for Structured Documents and Books

<Al sol nsert tagstring>

Additional statements as needed

>

End of EDAl sol nsert statement

<EDI ni ti al Tabl ePattern string>

List of the tags of table child elements that are automatically cre-
ated when a table is inserted

Valid only if EDCbj ect is one of the following:
EDTabl e

EDTbl Headi ng

EDTbl Body

EDTbI Footi ng

EDTbl Row

EDTbI Cel |

<EDAttrDefinitions

List of attribute definitions

<EDAt t r Def ..>

Definition of attribute (see “Attribute definitions” on page 147)

<EDAt t r Def ..>

Additional statements as needed

>

End of EDAtt rDefinitions statement

<EDPgf For mat string>

Paragraph format of the element

<EDText For mat Rul es..>

See “EDTextFormatRules statement”on page 149

<EDObj ect For mat Rul es..>

See “EDObjectFormatRules statement” on page 149

<EDPr ef i xRul es..>

See "EDPrefixRules statement” on page 149

<EDSuf fi xRul es..>

See "EDSuffixRules statement” on page 150

<EDSt art El enrent Rul es..>

See “EDStartElementRules statement”on page 150

<EDENndEl enent Rul es..>

See “"EDEndElementRules statement” on page 151

<EDComment s string>

Comments for the element definition

End of El ement Def statement

Usage

The element name can contain any characters from the FrameMaker character set except the following:

()&|,*+?<>%[]:!;:{}H

Content rules

The content rule for a container element consists of the following statements:

* A required <EDObj ect EDCont ai ner > statement specifies the element type.

* A required EDGener al Rul e statement specifies what the element can contain and in what order the element’s

contents can appear.

* An optional EDExcl usi ons statement specifies elements that cannot appear in the defined element or in its

descendents.

Online manual

ADOBE FRAMEMAKER 7.0 | 147
MIF Statements for Structured Documents and Books

 An optional EDI ncl usi ons statement specifies elements that can appear anywhere in the defined element or in
its descendents.

The general rule specification must follow the conventions for data in a MIF string. If a general rule contains angle
brackets (<>), the right angle bracket must be preceded by a backslash in the MIF string. For example, an element
that can contain text might have the following general rule:

<EDGeneralRule "<TEXT\>'>

If you don’t provide a general rule statement for a container element, the MIF interpreter applies the default rule
<ANY>. The rule means that any element or text is allowed.

The following general rule describes an element that must contain at least one element named Item.

<ElementDef
<EDTag ‘BulletList'>
<EDValidHighestLevel No >
<EDGeneralRule “Item+'>
<EDObject EDContainer >
> # end of ElementDef
For more information about content rules, see the online manual FrameMaker Structure Application Developer’s
Guide.

Attribute definitions

Element definitions can specify attribute definitions, which describe attributes (information stored with an element
other than its content). The definition of an attribute can specify that the attribute is required for all elements with
the element definition. It can also provide a list of the values the attribute can have and a default value.

EDAttrDef statement

The EDAt t r Def statement defines the formatting properties to be applied to a container, table, table child, or
footnote element in different contexts. It must appear in an El enent Def statement.

Syntax

<EDAttrDef Begin attribute definition
<EDAt tr Nane string> Attribute name
<EDAt t r Type keyword> Attribute type

keywor d can be one of:

FAt t r Choi ce:a value from a list of choices

FAt t r I nt :asigned whole number (optionally restricted to a
range of values)

FAt t r I nt s:one or moreintegers (optionally restricted to arange
of values)

FAt t r Real :areal number (optionally restricted to a range of val-
ues)

FAt t r Real s:one or more real numbers (optionally restricted to
arange of values)

FAt t r St ri ng:an arbitrary text string

FAt t r St ri ngs:one or more arbitrary text strings

FAt t r Uni quel d:a string that uniquely identifies the element
FAt t r Uni quel dRef :a reference to a UniquelD attribute

FAt t r Uni quel dRef s:one or more references to a UniquelD
attribute

Online manual

ADOBE FRAMEMAKER 7.0
MIF Statements for Structured Documents and Books

<EDAt t r Requi r ed bool ean>

Yes means the attribute is required

<EDAt t r ReadOnl y bool ean>

Yes means the attribute is read-only

<EDAt tr H dden bool ean>

Yes means the attribute is hidden and will not appear in the Struc-
ture view or in the Edit Attributes dialog box

<EDAt t r Choi ces

The choices, if the attribute type is FAt t r Choi ce

<EDAt t r Choi ce string>

A choice

<EDAt t r Choi ce string>

Additional statements as needed

> End of EDAttr Choi ces statement.

<EDAt t r Def Val ues The default if the attribute is not required. If the attribute type is
FAttrints, FAttrReal s,FAttrStrings,or FAttrU

ni quel dRef s, the default can have multiple strings

<EDAt t r Def Val ue string> A default value

<EDAt t r Def Val ue string> Additional statements as needed

> End of EDAtt r Def Val ues statement

<EDAt t r Range Range of values the attribute is allowed to have

<EDRangeStart string> The minimum value the attribute must have

<EDRangeEnd string> The maximum value the attribute must have

> End of EDAtt r Range statement

> End of EDAttrDef statement

Format rules

Format rules allow the template builder to specify the format of an element in specific circumstances. A format rule
can be either a context rule or a level rule.

A context rule contains clauses that specify an element’s formatting based on its parent and sibling elements. For
example, one clause of a format rule could specify that a Para element has the FirstBody paragraph format if it is the
first child of a Heading element. Another clause could specify that a Para element has the Body paragraph format in
all other contexts.

A level rule contains clauses that specify an element’s formatting on the basis of the level to which it is nested within
specific types of ancestor elements. For example, one clause of a level rule could specify that a Para element appears
in 12-point type if it has only one Section element among its ancestors. Another clause could specify that a Para
element appears in 10-point type if there are two Section elements among its ancestors.

Element definitions contain format rules grouped into the following statements:
* EDText For mat Rul es
* EDbj ect For mat Rul es

* EDPrefi xRul es

Online manual

148

e EDSuffi xRul es
* EDStartEl enent Rul es

* EDEndEl enent Rul es

EDTextFormatRules statement

ADOBE FRAMEMAKER 7.0 | 149
MIF Statements for Structured Documents and Books

The EDText For mat Rul es statement defines the formatting properties to be applied to a container, table, table child,
or footnote element in different contexts. It must appear in an El ement Def statement. An EDText For mat Rul es
statement can contain zero or more substatements describing level and context format rules.

Syntax

<EDTextFormatRules

Any combination of level and context format rules

<Level For mat Rul e..>

A level format rule (see “LevelFormatRule statement” on page 152)

<Cont ext For mat Rul e..>

A context format rule (see “ContextFormatRule statement”on page 151)

<Cont ext For mat Rul e..>

Additional context format rule statements as needed

<Level For mat Rul e..>

Additional level format rule statements as needed

End of EDText For mat Rul es statement

EDObjectFormatRules statement

The EDObj ect For mat Rul es statement defines the formatting properties to be applied to a table, cross-reference,

system variable, marker, graphic, or equation element in different contexts. It must appear in an El enent Def

statement.

An EDObj ect For mat Rul es statement can contain a single level format rule or a single context format rule.

Syntax

<EDObjectFormatRules

Begin object format rules (a single level format rule or a single context
format rule)

<Level For mat Rul e..>

A level format rule (see “LevelFormatRule statement” on page 152)

>

End of EDObj ect For mat Rul es statement

or

<EDObjectFormatRules

<Cont ext For mat Rul e..>

A context format rule (see “ContextFormatRule statement”on page 151)

End of EDObj ect For nmat Rul es statement

EDPrefixRules statement

A prefix is a fixed text range that appears at the beginning of an element (before the element’s content). The EDPr e-
fi xRul es statement defines the formatting properties to be applied to a prefix in different contexts. It must appear
in an El ement Def statement. It is valid only for container elements.

Online manual

ADOBE FRAMEMAKER 7.0 | 150
MIF Statements for Structured Documents and Books

An EDPr ef i xRul es statement can contain zero or more substatements describing level and context format rules.

Syntax
<EDPrefixRules Begin prefix rules (any combination of level and context format rules)
<Level For mat Rul e..> A level format rule (see “LevelFormatRule statement” on page 152)
<Cont ext For nat Rul e..> A context format rule (see “ContextFormatRule statement”on page 151)
<Cont ext For mat Rul e..> Additional context format rule statements as needed
<Level For mat Rul e..> Additional level format rule statements as needed
> End of EDPrefi xRul es statement

EDSuffixRules statement

A suffix is a fixed text range that appears at the end of an element (after the element’s content). The EDSuf f i xRul es
statement defines the formatting properties to be applied to a suffix in different contexts. It must appear in an
El enent Def statement. It is valid only for container elements.

An EDSuf f i xRul es statement can contain zero or more substatements describing level and context format rules.

Syntax
<EDSuffixRules Begin suffix rules (any combination of level and context format rules)
<Level For mat Rul e..> A level format rule (see “LevelFormatRule statement” on page 152)
<Cont ext For nat Rul e..> A context format rule (see “ContextFormatRule statement” on page 151)
<Cont ext For mat Rul e..> Additional context format rule statements as needed
<Level For mat Rul e..> Additional level format rule statements as needed
> End of EDSuf fi xRul es statement

EDStartElementRules statement

The EDSt ar t El ement Rul es statement defines a special set of format rules to be applied to the first paragraph in a
parent element. The EDSt ar t El ement Rul es statement must appear in an El enent Def statement. It is valid only for
container elements.

An EDSt ar t El ement Rul es statement can contain zero or more substatements describing level and context format

rules.
Syntax
<EDStartElementRules Begin start element rules (any combination of level and context format
rules)
<Level For mat Rul e..> A level format rule (see “LevelFormatRule statement” on page 152)
<Cont ext For nat Rul e..> A context format rule (see “ContextFormatRule statement” on page 151)

Online manual

ADOBE FRAMEMAKER 7.0 | 151
MIF Statements for Structured Documents and Books

<Cont ext For mat Rul e..> Additional context format rule statements as needed
<Level For mat Rul e..> Additional level format rule statements as needed
> End of EDSt art El enent Rul es statement

EDEndElementRules statement

The EDEndEl enent Rul es statement defines a special set of format rules to be applied to the last paragraph in a
parent element. The EDEndEl ement Rul es statement must appear in an El enent Def statement. It is valid only for
container elements.

An EDEndEl enent Rul es statement can contain zero or more substatements describing level and context format

rules.
Syntax
<EDEndElementRules Begin end element rules (any combination of level and context format
rules)
<Level For mat Rul e..> A level format rule (see “LevelFormatRule statement” on page 152)
<Cont ext For nat Rul e..> A context format rule (see “ContextFormatRule statement” on page 151)
<Cont ext For nat Rul e..> Additional context format rule statements as needed
<Level For mat Rul e..> Additional level format rule statements as needed
> End of EDENdE!l enent Rul es statement

ContextFormatRule statement

The Cont ext For mat Rul e statement contains clauses that specify an element’s formatting on the basis of the
element’s parent and sibling elements. It contains an | f statement and zero or more El sel f statements. It can also
contain an El se statement.

The Cont ext For mat Rul e statement must appear in a format rules statement, such as an EDText For mat Rul es or
EDEndEl enent Rul es statement.

Syntax

<ContextFormatRule Begin context format rule
<|f.> An If clause (see “If, Elself, and Else statements” on page 152)
<El sel f ..> An Elself clause (see “If, Elself, and Else statements” on page 152)
<El sel f .» Additional statements as needed
<El se..> An optional Else clause (see “If, Elself,and Else statements” on

page 152)
> End of Cont ext For mat Rul e statement

Online manual

ADOBE FRAMEMAKER 7.0 | 152
MIF Statements for Structured Documents and Books

LevelFormatRule statement

The Level For mat Rul e statement contains statements that specify an element’s formatting on the basis of the level
to which the element is nested within specific types of ancestor elements.

The Level For mat Rul e statement contains a Count El ement s statement listing the tags of elements to count
among the element’s ancestors and a statement specifying the tag of the element at which to stop counting. The
Level For mat Rul e statement also contains an | f statement, zero or more El sel f statements, and an optional

El se statement. The 1f, El self,and El se statements define the formatting applied to the element at specified
levels of nesting within the ancestor elements specified by the Count El ement s statement.

The Level For mat Rul e statement must appear in a format rules statement, such as an EDText For mat Rul es or
EDENdEl ement Rul es statement.

Syntax
<LevelFormatRule Begin level format rule
<Count El enent s Optional list of elements to count among the element’s ancestors
<Count El enent tagstring> Tag of element to count
<Count El ement tagstring> Additional statements as needed
> End of Count El ement's statement
<St opCounti ngAt tagstring> Optional tag of element at which to stop counting
<|f.>» An If clause (see “If, Elself, and Else statements” on page 152)
<El sel f ..> An optional Elself clause (see “If, Elself,and Else statements” on
page 152)
<El sel f ..> Additional statements as needed
<El se..> An optional Else clause (see “If, Elself,and Else statements”on page 152)
> End of Level For mat Rul e

If, Elself, and Else statements

If, El sel f,and El se statements specify clauses within Cont ext For mat Rul e and Level For mat Rul e statements.
In a Cont ext For mat Rul e statement, they specify a context and one or more statements that define how to change
formatting when the context applies. If an I f or El sel f statement does not include a Cont ext or Level
statement, or the Cont ext or Level statement contains an empty string, this indicates that the 1f or El sel f
statement applies in all contexts.

In a Cont ext For mat Rul e statement, | f and El sel f, and El se statements take the following form:

<If Begin If clause

<Cont ext contextstring> String specifying a context, such as Sect i on < Sect i on.If this con-
text applies to the element, the following formatting statements are used
to format the element.

Online manual

ADOBE FRAMEMAKER 7.0

MIF Statements for Structured Documents and Books

<Fornmatting statenment>

Astatement (suchasa For mat Tag or Fmt ChangelLi st Tag state-
ment) that specifies how to change the formatting when the Cont ext
statement applies (see “Formatting statements,” next, for a list of format-
ting statements)

>

Endof | f statement

<Elself

<Cont ext contextstring>

<Fornmatting statenment>

>

Endof El sel f statement

<Else

An optional Else clause

<Fornmatting statenment>

End of El se statement

InaLevel Format Rul e statement, | f and El sel f, and El se statements take the following form:

<If

Begin If clause

<Level |evelstring>

String specifying a level of nesting,suchas 1 or 5.If the element is nested
to this level, the following formatting statements are used to format the ele-
ment.

<Fornmatting statenment>

A statement (suchasa For mat Tag or Fnt Changeli st Tag state-
ment) that specifies how to change the formatting when the Level state-
ment applies (see “Formatting statements,” next, for a list of formatting state-
ments)

>

Endof | f statement

<Elself

Begin Elself clause

<Level |evelstring>

<Fornmatting statenment>

Additional formatting statements as needed

>

Endof El self statement

<Else

An optional Else clause

<Fornmatting statenment>

Additional formatting statements as needed

End of El se statement

Online manual

153

Formatting statements

ADOBE FRAMEMAKER 7.0 | 154
MIF Statements for Structured Documents and Books

If, El self,and El se statements can use the following statements to specify an element’s formatting:

<IsTextRange bool ean>

Yes if the element is formatted as a text range instead of as a paragraph

Only text format rules can include this statement.

<FormatTag tagstring>

The format tag.If | sText Range specifies Yes,tagstring specifies
a character format tag; otherwise, it specifies a paragraph tag, table tag,
marker type, cross-reference format, or equation size

Only text and object format rules can include this statement

<FmtChangeListTag tagstring>

The tag of a named format change list (a format change list in the format
change list catalog).For more information on format change lists, see “Format
change lists”on page 154

Object format rules can't include this statement

<FmtChangeList ...>

The definition of an unnamed format change list. For more information on
format change lists, see “Format change lists” on page 154

Object format rules can’t include this statement

<ContextFormatRule ...>

The definition of a nested context format rule

<LevelFormatRule ...>

The definition of a nested level format rule

<ContextLabel | abel string>

The context label for generated files. It cannot contain white-space characters
or any of these special characters:

() &| , *+2<>%[]=1;:{}"

When a user displays the Set Up dialog box to set up a generated file, the label
appears next to elements to whichthe | f, El sel f,or El se statement
applies

Only text and object format rules can include this statement

<ElementPrefix string>

A string that appears before the element

Only prefix rules can include this statement

<ElementSuffix string>

A string that appears after the element

Only suffix rules can include this statement

Each If, El self,and El se statement can include only one of the following formatting statements:

* For mat Tag

* Fmt Changeli st

* Fnt Changeli st Tag
* Cont ext For mat Rul e

* Level Format Rul e

Format change lists

A format change list specifies how a paragraph format changes when a format rule clause applies. A change list can
specify a change to just a single paragraph property, or it can specify changes to a long list of properties.

Online manual

ADOBE FRAMEMAKER 7.0
MIF Statements for Structured Documents and Books

A format change list can be named or unnamed. A named change list appears in the Format Change List Catalog.
Format rule clauses that use a named change list specify its name (or tag). Multiple rule clauses can specify the same
named change list. An unnamed change list appears in a rule clause. It is used only by the rule clause in which it
appears.

FmtChangelListCatalog statement

The Fnt ChangelLi st Cat al og statement defines the contents of the Format Change List Catalog. A document can
have only one Fnt ChangelLi st Cat al og statement which must appear at the top level in the order given in “MIF file
layout” on page 11.

Syntax
<FmtChangeListCatalog Begin Format Change List Catalog
<Fnt ChangelLi st ..> Defines an element (see “FmtChangelList statement,” next)
<Fnt ChangelLi st ..> Additional statements as needed
> End of Fnt Changeli st Cat al og statement

FmtChangelist statement

The Fnt ChangelLi st statement creates a format change list definition. The Fnt ChangelLi st statement for a named
change list must appear in the Fnt ChangelLi st Cat al og statement. The Fnt ChangelLi st statement for a unnamed
change list must appear in the format rule clause that uses it.

A change list can specify absolute values or relative values. For example, it can specify that the paragraph left indent
is one inch or it can specify that it is one inch greater than the inherited left indent. Alternatively, a change list can
simply specify a paragraph catalog format to apply to a paragraph. If it does this, it can’t specify changes to any other
paragraph properties.

If a Fnt ChangelLi st statement defines a named change list, it must include an Fcl Tag statement specifying its
name. In addition, it must contain one statement for each paragraph format property it changes. For example, if a
named change list changes only the first indent by a relative value, it contains only Fcl Tag and Pgf FI ndent Change
statements. If it changes the space below and the leading with absolute values, it contains Fcl Tag, Pgf SpBef or e,
and Pgf Leadi ng statements.

If a Fnt ChangelLi st statement changes a paragraph property to an absolute value, the statement it uses is the same
as the corresponding paragraph format statement (for example, Pgf LI ndent). If the change list changes a property
with a relative value, the statement it uses has the name of the corresponding paragraph format statement with the
word Change appended to it (for example, Pgf LI ndent Change).

Syntax

Basic properties

<FmtChangeList Begin format change list
<Fcl Tag tagstring> Format change list name if the format change list is named
<Fcl Pgf Cat al ogRef tagstring> A paragraph catalog format to apply.If the Fnt Change-

Li st statementincludes this statement, it can't include any
of the following statements

155

Online manual

ADOBE FRAMEMAKER 7.0 | 156
MIF Statements for Structured Documents and Books

<Pgf FI ndent di mensi on>

First line left margin, measured from left side of current text
column

<Pgf FI ndent Change di nensi on>

Change to the first line left margin

<Pgf FI ndent Rel ati ve bool ean>

Yes means the firstindent is relative to the left indent instead
of the left side of the current text column

<Pgf LI ndent di nensi on>

Left margin, measured from left side of current text column

<Pgf LI ndent Change di nensi on>

Change to the left margin

<Pgf Rl ndent di nensi on>

Right margin, measured from right side of current text column

<Pgf Rl ndent Change di mensi on>

Change to the right margin

<Pgf Al i gnment keywor d>

Alignment within the text column

keywor d can be one of:
Left Ri ght

Left

Cent er

Ri ght

<Pgf SpBef or e di nensi on>

Space above paragraph

<Pgf SpBef or eChange di nensi on>

Change to space above paragraph

<Pgf SpAfter di nensi on>

Space below paragraph

<Pgf SpAf t er Change di nensi on>

Change to space below paragraph

<Pgf Li neSpaci ngFi xed bool ean>

Yes means the lines spacing is fixed (to the default font size)

<Pgf Leadi ng di nensi on>

Space below each line in a paragraph

<Pgf Leadi ngChange di mensi on>

Change to space below each line in a paragraph

<Pgf Numrabs i nt eger >

Number of tabs in a paragraph.To clear all the tabs in a para-
graph, specify 0

<TabSt op

Begin definition of tab stop; the following property statements
can appear in any order, but must appear withina TabSt op
statement

<TSX di nensi on>

Horizontal position of tab stop

<TSXRel ati ve bool ean>

Yes means the tab stop is relative to the left indent

<TSType keyword>

Tab stop alignment

keywor d can be one of:
Left

Cent er

Ri ght

Deci mal

<TSLeader Str string>

Tab stop leader string (for example, ™ .")

<TSDeci mal Char i nteger>

Align decimal tab around a character by ASCII value; in UNIX
versions,type man asci i inaUNIX window for a list of char-
acters and their corresponding ASCII values

End of TabSt op statement

Online manual

ADOBE FRAMEMAKER 7.0 | 157
MIF Statements for Structured Documents and Books

<TabSt op..>

Additional statements as needed

<MbveTabs di nensi on>

Move all tabs by a specified distance. A format change list can
have one or more TabSt ob statements,ora MoveTabs
statement. It can't have both

Default font name properties

<FFam |y string>

Name of font family

<FAngl e string>

Name of angle

<FWei ght string>

Name of weight

<FVar string>

Name of variation

<FPost Scri pt Nane string>

Name of font when sent to PostScript printer (see “Font name”
on page 66)

<FPl at f or mNane string>

Platform-specific font name, only read by Macintosh and Win-
dows versions (see “FPlatformName statement”on page 67)

Default font size color and width

<FSi ze di nensi on>

Size,in points only

<FSi zeChange di nensi on>

Change to default font size

<FCol or tagstring>

Font color (see “ColorCatalog statement”on page 78)

<FSepar ati on integer>

Font color; no longer used, but written out by FrameMaker for
backward-compatibility (see “Color statements” on page 244)

<FStretch percent>

The amount to stretch or compress the font, where 100%
means no change

<FStret chChange percent>

The amount to change the width setting for the font, where
100% means no change

Online manual

ADOBE FRAMEMAKER 7.0 | 158
MIF Statements for Structured Documents and Books

Default font style

<FUnder | i ni ng keywor d>

Turns on underlining and specifies underlining style

keywor d can be one of:
FNoUnder | i ni ng
FSi ngl e

FDoubl e

FNurreri c

<FOverli ne bool ean>

Turns on overline style

<FStri ke bool ean>

Turns on strikethrough style

<FChangeBar bool ean>

Turns on the change bar

<FPosi ti on keyword>

Specifies subscript and superscript characters; font size and
position relative to baseline determined by Docunent sub-
statements (see page 88)

keywor d can be one of:
FNor nal

FSuper scri pt
FSubscri pt

<FQut | i ne bool ean>

Turns on outline style (Macintosh version only)

<FShadow bool ean>

Turns on shadow style (Macintosh version only

<FPai r Ker n bool ean>

Turns on pair kerning

<FCase keyword>

Applies capitalization style to string

keywor d can be one of:
FAsTyped

FSmal | Caps

FLower case

FUpper case

Default font kerning information

<FDX percent >

Horizontal kern value for manual kerning expressed as per-
centage of an em; positive value moves characters right and
negative value moves characters left

<FDY percent >

Vertical kern value for manual kerning expressed as percent-
age of an em; positive value moves characters down and neg-
ative value moves characters up

<FDW per cent >

Spread value for space between characters expressed as per-
centage of an em; positive value increases the space and neg-
ative value decreases the space

<FDWChange di nensi on>

Change to spread value for space between characters
expressed as percentage of an em; positive value increases the
space and negative value decreases the space

Default font miscellaneous information

<FLocked bool ean>

Yes means the font is part of a text inset that obtains its for-
matting properties from the source document

Online manual

ADOBE FRAMEMAKER 7.0 | 159
MIF Statements for Structured Documents and Books

Pagination properties

<Pgf Pl acenment keywor d>

Vertical placement of paragraph in text column

keywor d can be one of:
Anywher e

Col umTop
PageTop

LPageTop
RPageTop

<Pgf Pl acenent St yl e keywor d>

Placement of side heads, run-in heads, and paragraphs that
straddle text columns

keywor d can be one of:

Nor mal

Runl n

Si deheadTop

Si deheadFi r st Basel i ne
Si deheadLast Basel i ne
Straddl e

St r addl eNor mal Onl 'y

<Pgf Runl nDef aul t Punct string>

Default punctuation for run-in heads

<Pgf Wt hPrev bool ean>

Yes keeps paragraph with previous paragraph

<Pgf Wt hNext bool ean>

Yes keeps paragraph with next paragraph

<Pgf Bl ockSi ze integer>

Widow/orphan lines

Numbering properties

<Pgf Aut oNum bool ean>

Yes turns on autonumbering

<Pgf NunmFor mat string>

Autonumber formatting string

<Pgf Nurmber Font tagstring>

Tag from Character Catalog

<Pgf NumAt End bool ean>

Yes places number at end of line, instead of beginning

Advanced properties

<Pgf Hyphenat e bool ean>

Yes turns on automatic hyphenation

<HyphenMaxLi nes i nt eger>

Maximum number of consecutive lines that can end in a
hyphen

<HyphenM nPrefix integer>

Minimum number of letters that must precede hyphen

<HyphenM nSuf fi x integer>

Minimum number of letters that must follow a hyphen

<HyphenM nWrd i nt eger>

Minimum length of a hyphenated word

<Pgf Let t er Space bool ean>

Spread characters to fill line

<Pgf M nWor dSpace i nt eger >

Minimum word spacing (as a percentage of a standard space in
the paragraph’s default font)

<Pgf Opt Wor dSpace i nt eger >

Optimum word spacing (as a percentage of a standard space in
the paragraph’s default font)

<Pgf MaxWbr dSpace i nt eger >

Maximum word spacing (as a percentage of a standard space
in the paragraph’s default font)

Online manual

ADOBE FRAMEMAKER 7.0 | 160
MIF Statements for Structured Documents and Books

<Pgf Language keywor d>

Language to use for spelling and hyphenation

keywor d can be one of:
NoLanguage
USEngl i sh
UKEngl i sh

Ger man

Swi ssGer man
French

Canadi anFr ench
Spani sh

Cat al an
Italian

Por t uguese
Brazilian

Dani sh

Dut ch

Nor wegi an
Nynor sk

Fi nni sh

Swedi sh

<Pgf TopSepar at or string>

Name of reference frame (from reference page) to put above
paragraph

<Pgf TopSepAt | ndent bool ean>

Yes if the position of the frame specified by the Pgf -
TopSepar at or statement is at the current left indent

<Pgf TopSepOf f set di nensi on>

Position at which to place the reference frame above the para-
graph

<Pgf Bot Separ at or string>

Name of reference frame (from reference page) to put below
paragraph

<Pgf Bot SepAt | ndent bool ean>

Yes if the position of the frame specified by the Pgf Bot -
Separ at or statement is at the current left indent

<Pgf Bot SepOf f set di nensi on>

Position at which to place the reference frame below the para-
graph

Online manual

ADOBE FRAMEMAKER 7.0
MIF Statements for Structured Documents and Books

Table cell properties

<Pgf Cel | Al i gnment keywor d>

Vertical alignment for first paragraph in a cell

keywor d can be one of:

Top

M ddl e
Bott om

<Pgf Cel | LMar gi n di mensi on>

Left cell margin for first paragraph in a cell

<Pgf Cel | LMar gi nChange di nensi on>

Change to left cell margin for first paragraph in a cell

<Pgf Cel | BMar gi n di mensi on>

Bottom cell margin for first paragraph in a cell

<Pgf Cel | BMar gi nChange di nensi on>

Change to bottom cell margin for first paragraph in a cell

<Pgf Cel | TMar gi n di mensi on>

Top cell margin for first paragraph in a cell

<Pgf Cel | TMar gi nChange di nensi on>

Change to top cell margin for first paragraph in a cell

<Pgf Cel | Rvar gi n di mensi on>

Right cell margin for first paragraph in a cell

<Pgf Cel | Rvar gi nChange di nensi on>

Change to right cell margin for first paragraph in a cell

<Pgf Cel | LMar gi nFi xed bool ean>

Yes means the left cell margin is fixed

<Pgf Cel | TMar gi nFi xed bool ean>

Yes means the top cell margin is fixed

<Pgf Cel | Rvar gi nFi xed bool ean>

Yes means the right cell margin is fixed

<Pgf Cel | BMar gi nFi xed bool ean>

Yes means the bottom cell margin is fixed

End of Fnt Changeli st statement.

Elements

ElementBegin and ElementEnd statements

The El enent Begi n and El ement End statements indicate where a structural element begins and ends. These state-
ments must appear in a Par aLi ne statement (see page 167) or in a BookEl enent s statement (see page 170).

Syntax
<ElementBegin Begin element
<Uni que | D> ID, persistent across sessions, assigned when FrameMaker generates a

MIF file; used by the APl and should not be used by filters

<El enent Ref er enced bool ean>

Yes means the element is marked as a PDF named destination for cross-
references, hypertext markers, or bookmarks (version 6.0 or later)

<ETag tagstring>

Tag name of element from Element Catalog

<Col | apsed bool ean>

Collapse element in structure view

<Speci al Case bool ean>

Treat element as a special case for validation

<ENanespace <

The element’s namespace declarations; a declaration consists of one
<ENanespacePr ef i Xx>and one <ENanespacePat h>

161

Online manual

ADOBE FRAMEMAKER 7.0 | 162
MIF Statements for Structured Documents and Books

<ENamespacePrefi x string>

The prefix that identifies the namespace

<ENanmespacePat h string>

The system path or URI to the DTD or schema that defines the namespace

Additional pairs of prefix and path statements as needed

>

End of Nanmespace statement

<AttributeD splay keyword>

Default attribute display setting for element

keywor d can be one of:

Al | At tri but es:display all attributes
RegAndSpec:display required and specified attributes
None:don't display attributes

<Atributes

Element’s attributes

<Attribute

Attribute’s name and values

<AttrNane string>

Attribute name

<AttrVal ue string>

Attribute value

<AttrVal ue string>

Attribute value if attribute allows more than one value

>

Endof Attri bute statement

<Attribute.>

Additional statements as needed

>

Endof Attri butes statement

<User String string>

A string in which clients can store private data — can be up to 1023 char-
acters in length

>

End of El enent Begi n statement

<ElementEnd tagstring>

End of specified element

Usage

FrameMaker writes out the t agst ri ng value in an El enent End statement for use by filters. Your application does
not need to supply the t agst ri ng value when it writes MIF files.

If the interpreter reads unbalanced El enent Begi n and El enent End statements, it ignores superfluous element ends
and closes all open elements at the end of a Text FI owstatement. If the interpreter reads a flow that does not have an
element enclosing all of the flow’s contents, it creates a highest-level element with the tag NoNane. El ement Begi n

and El enent End statements are nested within Par aLi ne and BookEl enent s statements. The following example
shows how FrameMaker writes an UnorderedList element:

<Para
<PgfTag “Bullet'>

The autonumber contains a bullet and a tab.

<PgfNumString “\xa5 \t'>

<ParaLine

Note that the ElementBegin statement is nested inside both

the Para and ParalLine statements.

<ElementBegin

Online manual

ADOBE FRAMEMAKER 7.0
MIF Statements for Structured Documents and Books

<ETag ‘UnorderedList'>
<Collapsed No >
<SpecialCase No >
> # end of ElementBegin
<ElementBegin
<ETag “Item'>
<Collapsed No >
<SpecialCase No >
> # end of ElementBegin
<String ‘Light rail provides transportation for those who ">
>
<ParaLine
<String ‘are unable to drive or cannot afford an automobile.'>
<ElementEnd "Item'>
>
> # end of Para
<Para
<PgfTag “Bullet'>
<PgfNumString “\xa5 \t'>
<ParaLine
<ElementBegin
<ETag ‘Item'>
<Collapsed No >
<SpecialCase No >
> # end of ElementBegin
<String "Light rail lures commuters away from rush hour traffic.'>
Again, note that both the Item and Bulletlist elements end
before the end of the Para and ParaLine statements.
<ElementEnd “Item'>
<ElementEnd “UnorderedList'>
>
> # end of Para

PrefixEnd and SuffixBegin statements

The Pr ef i xEnd statement appears after the El enent Begi n statement and any prefix strings the element has. Every-
thing between the El ement Begi n statement and the Pr ef i XEnd statement is treated as the element prefix. The
Pr ef i XEnd statement does not appear when the element has no prefix.

The Suf f i xBegi n statement appears before the element suffix string, which is followed by the El ement End
statement. Everything between the Suf f i xBegi n statement and the El enent End statement is treated as the element
suffix. The El ement End statement does not appear when the element has no suffix.

163

Online manual

ADOBE FRAMEMAKER 7.0 | 164
MIF Statements for Structured Documents and Books

XML data for structured documents

Document and book statements

In versions 7.0 and later, FrameMaker supports XML import and export. The following statements store information

necessary to properly save a document or book as XML. Statements that begin with DX . . . are document state-
ments, and statements that begin with BXnl . . . are book statements.
Syntax

<DXmlDocType string> The name given to the XML document type

<BXmlDocType string>

<DXmlSystemId string> The system identifier for the XML document type
<DXmlSystemId string>

<DXmlEncoding string> The XML encoding parameter that was specified in the XML declara-

<BXmlEncoding string> tion when the XML file was opened

<DXmlFileEncoding string> The XML encoding that was found in the imported XML file
<BXmlFileEncoding string>

<DXmlPublicld string> The public identifier for the XML document type
<DXmlPublicld string>

<DXmlStandAlone int> The XML standalone parameter that was specified in the XML declara-
<BXmlStandAlone int> tion when the XML file was opened—determines whether or not the
XML document requires a DTD

<DXmlStyleSheet string> The URI for the stylesheet associated with the imported XML docu-
<BXmlStyleSheet string> ment

<DXmlUseBOM int> The Byte Order Mark that was specified in the imported XML docu-
<BXmlUseBOM int> ment

<DXmlWellFormed int> Indicates whether the XML document was wellformed or not

<BXmlIWellFormed int>

<DXmlVersion string> The XML version that was specified in the XML declaration when the

<BXmlVersion string> XML file was opened

Preference settings for structured documents

Document statement

In addition to document preferences for standard FrameMaker documents (see “Document statement” on page 82),
the MIF Docunent statement describes preferences for structured FrameMaker documents.

Online manual

Syntax

ADOBE FRAMEMAKER 7.0 | 165
MIF Statements for Structured Documents and Books

<Document

See page 82

<DEl enment Cat al ogScope keywor d>

Validation scope

keywor d can be one of:
Strict

Loose

Chi l dren

All

Cust onli st

<DCust onEl enent Li st

List of tags to display when DEl enent Cat al ogScope spec-
ifies Cust onli st

<EDTag string>

Element definition name

<EDTag string>

Additional statements as needed

>

End of DCust onEl enent Li st statement

<DAttri but eDi spl ay keyword>

Default attribute display setting for document

keywor d can be one of:

Al l At tri but es:display all attributes
RegAndSpec:display required and specified attributes
None:don't display attributes

<DAttr Edi t or keyword>

When Edit Attributes dialog box appears for new elements

keywor d can be one of:

Never : never

Al ways: always

WhenRequi r ed:when there are required attributes

<DEl enent Bor der sOn bool ean>

Yes turns on element borders in document window. This state-
mentand DEl ement Tags are mutually exclusive. If both state-
ments appear in a MIF file, the later statement overrides the earlier
one

<DEl enent Tags bool ean>

Yes turns on element tags in document window. This statement
and DEl enent Bor der sOn are mutually exclusive. If both
statements appear in a MIF file, the later statement overrides the
earlier one

<DUsel ni t St ruct ure bool ean>

Yes means structured FrameMaker inserts initial structure for
new elements

<DSGMLAppNane string>

The name of the SGML application associated with the document.
For information on registering SGML applications, see the online
manual FrameMaker Structure Application Developer’s Guide

<DExcl usi ons..>

Lists exclusions inherited when document is included in a struc-
tured book (see “ElementDef statement” on page 145)

<Dl ncl usi ons..>

Lists inclusions inherited when document is included in a struc-
tured book (see “ElementDef statement”on page 145)

<DSepar at el ncl usi ons bool ean>

Yes means structured FrameMaker lists inclusions separately in
the element catalog

<DApp! yFor nmat Rul es bool ean>

Yes uses element format rules to reformat document on opening
and to remove format overrides; for input filters only, not gener-
ated by FrameMaker

Online manual

ADOBE FRAMEMAKER 7.0 | 166
MIF Statements for Structured Documents and Books

<DBookE!l enment Hi er ar chy

If the document is in a book, list of ancestors of the document’s
root element

<El enent Cont ext

Describes ancestor element of the document’s root element

<Pr evEl enent

<ETag tagstring>

Tag of sibling element preceding ancestor element

<Attributes .>

>
<El ement
<ETag tagstring> Tag of ancestor element
<Attributes .>
>

<Next El enent

<ETag tagstring>

Tag of sibling element following ancestor element

<Attributes .>

End of El enent Cont ext statement

>

End of DBOOKEIl enent Hi er ar chy statement

<DFCLMaxi mumns

Upper change list limits. Format change lists cannot increment
properties beyond these values

<Pgf FI ndent di mensi on>

Maximum first indent allowed in document

<Pgf LI ndent di mensi on>

Maximum left indent allowed in document

<Pgf Rl ndent di mensi on>

Maximum right indent allowed in document

<Pgf SpBef or e di mensi on>

Maximum space before allowed in document

<Pgf SpAf t er di mensi on>

Maximum space after allowed in document

<Pgf Leadi ng di mensi on>

Maximum leading allowed in document

<FSi ze dinmensi on>

Maximum font size allowed in document

<FDW di nmensi on>

Maximum character spread allowed in document

<TSX di nensi on>

Maximum horizontal position of tab stop

<Pgf Cel | LMar gi n di mensi on> Maximum left cell margin for first paragraph in a cell

<Pgf Cel | BMar gi n di mensi on> Maximum bottom cell margin for first paragraph in a cell

<Pgf Cel | TMar gi n di mensi on> Maximum top cell margin for first paragraph in a cell

<Pgf Cel | Rvar gi n di mensi on> Maximum right cell margin for first paragraph in a cell

> End of DFCLMaxi nuns statement

Online manual

ADOBE FRAMEMAKER 7.0

MIF Statements for Structured Documents and Books

<DFCLM ni nuns Lower change list limits. Format change lists cannot decrement

properties below these values

<Pgf FI ndent di nensi on> Minimum first indent allowed in document
<Pgf LI ndent di mensi on> Minimum left indent allowed in document
<Pgf Rl ndent di mensi on> Minimum right indent allowed in document
<Pgf SpBef or e di mensi on> Minimum space before allowed in document
<Pgf SpAf t er di mensi on> Minimum space after allowed in document
<Pgf Leadi ng di nensi on> Minimum leading allowed in document
<FSi ze di mensi on> Minimum font size allowed in document.
<FDW di nensi on> Minimum character spread allowed in document.
<TSX di nensi on> Minimum horizontal position of tab stop
<Pgf Cel | LMar gi n di mensi on> Minimum left cell margin for first paragraph in a cell
<Pgf Cel | BMar gi n di mensi on> Minimum bottom cell margin for first paragraph in a cell
<Pgf Cel | TMar gi n di mensi on> Minimum top cell margin for first paragraph in a cell
<Pgf Cel | Rvar gi n di mensi on> Minimum right cell margin for first paragraph in a cell
> End of DFCLM ni nums statement
> End of Docunent statement

Text in structured documents

TextLine statement

Text lines cannot contain elements.

ParalLine statement

The Par aLi ne statement defines a line within a paragraph. It must appear in a Par a statement.

Syntax
<ParaLline
<El emrent Begi n..> Begin structural element (see page 161)
<El ement End tagstring> End structural element
> End of ParaLi ne statement
Usage

A typical Par aLi ne statement consists of one or more St ri ng, Char, ATbl , AFr arre, FNot e, Var i abl e, XRef , and
Mar ker statements that define the contents of the line of text. These statements are interspersed with statements that

indicate the scope of document components such as structural elements and conditional text.

167

Online manual

Structured book statements

ADOBE FRAMEMAKER 7.0 | 168
MIF Statements for Structured Documents and Books

A structured book file contains documents that were created in FrameMaker. These documents normally contain
structural elements. A structured book file has the same book statements that appear in a normal book file plus two

additional types of information about structural elements:

 An Element Catalog defined in El enent Def Cat al og

* A structure tree defined in BookEl erment s

ElementDefCatalog statement

The El emrent Def Cat al og statement contains the definitions of all elements in the book file. A book file can have

only one El enent Def Cat al og statement. It normally appears near the beginning of the file.

Syntax

<ElementDefCatalog

Begin Element Catalog

<El enent Def .>

Element definitions (defined on page 145)

<El enent Def ..>

Additional statements as needed

End of El ement Def Cat al og statement

Usage

The book file inherits the Element Catalog from the document used to generate the book file or from a document

given as the source for the Import>Element Definitions command. In a MIF file, you should copy the Element

Catalog from one of the structure documents included in the book.

BookSettings statement

The BookSet t i ngs statement contains the definitions of all elements in the book file. A book file can have only one
BookSet t i ngs statement. It normally appears near the beginning of the file. The statements in the BookSet t i ngs
statement correspond to statements in the BookSet t i ngs statement, except that they begin with the letter B instead

of the letter D.

Syntax

<BookSettings

Begin book settings

<BEl enment Cat al ogScope keywor d>

Validation scope

keywor d can be one of:
Strict

Loose

Chil dren

All

Cust onli st

<BCust onEl enent Li st

List of tags to display when BEl enent Cat al ogScope specifies
Cust onli st

<EDTag string>

Element definition name

<EDTag string>

Additional statements as needed

Online manual

ADOBE FRAMEMAKER 7.0 | 169
MIF Statements for Structured Documents and Books

>

End of DCust onEl enent Li st statement

<BAttri buteDi spl ay keyword>

Default attribute display setting for document

keywor d can be one of:

Al'l Attri but es:display all attributes
ReqAndSpec:display required and specified attributes
None:don't display attributes

<BAttr Edi t or keyword>

When Edit Attributes dialog box appears for new elements

keywor d can be one of:

Never : never

Al ways: always

WhenRequi r ed:when it is required

<BUsel ni t St ruct ure bool ean>

Yes means structured FrameMaker inserts initial structure for new
elements

<BSGMLAppNane string>

The name of the SGML application associated with the document. For
information on registering SGML applications, see the online manual
FrameMaker Structure Application Developer’s Guide

<BSepar at el ncl usi ons bool ean>

Yes means structured FrameMaker lists inclusions separately in the
element catalog

<BFCLMaxi mumns

Upper change list limits. Format change lists cannot increment proper-
ties beyond these values

<Pgf FI ndent di mensi on>

Maximum first indent allowed in book

<Pgf LI ndent di mensi on>

Maximum left indent allowed in book

<Pgf Rl ndent di mensi on>

Maximum right indent allowed in book

<Pgf SpBef or e di mensi on>

Maximum space before allowed in book

<Pgf SpAf t er di mensi on>

Maximum space after allowed in book

<Pgf Leadi ng di mensi on>

Maximum leading allowed in book

<FSi ze dinmensi on>

Maximum font size allowed in book

<FDW di mensi on>

Maximum character spread allowed in book

<TSX di nensi on>

Minimum horizontal position of tab stop

<Pgf Cel | LMar gi n di mensi on>

Minimum left cell margin for first paragraph in a cell

<Pgf Cel | BMar gi n di mensi on>

Minimum bottom cell margin for first paragraph in a cell

<Pgf Cel | TMar gi n di mensi on>

Minimum top cell margin for first paragraph in a cell

<Pgf Cel | Rvar gi n di mensi on>

Minimum right cell margin for first paragraph in a cell

>

End of BFCLMaxi muns statement

<BFCLM ni muns

Lower change list limits. Format change lists cannot decrement proper-
ties below these values

<Pgf FI ndent di nensi on>

Minimum first indent allowed in book

Online manual

ADOBE FRAMEMAKER 7.0 | 170

MIF Statements for Structured Documents and Books

<Pgf LI ndent di mensi on>

Minimum left indent allowed in book

<Pgf Rl ndent di mensi on>

Minimum right indent allowed in book

<Pgf SpBef or e di mensi on>

Minimum space before allowed in book

<Pgf SpAfter dinension>

Minimum space after allowed in book

<Pgf Leadi ng di mensi on>

Minimum leading allowed in book

<FSi ze di nensi on>

Minimum font size allowed in book

<FDW di mensi on>

Minimum character spread allowed in book

<TSX di nensi on>

Minimum horizontal position of tab stop

<Pgf Cel | LMar gi n di mensi on>

Minimum left cell margin for first paragraph in a cell

<Pgf Cel | BVar gi n di mensi on>

Minimum bottom cell margin for first paragraph in a cell

<Pgf Cel | TMar gi n di nensi on>

Minimum top cell margin for first paragraph in a cell

<Pgf Cel | Rvar gi n di mensi on>

Minimum right cell margin for first paragraph in a cell

End of BFCLM ni muns statement

End of BookSetti ngs statement

BookElements statement

The BookEl ement s statement contains all of the elements in the book’s hierarchy. This statement must appear after
the BookConponent statements. Otherwise, the MIF interpreter warns you about out-of-bounds EConponent

values.

Syntax

<BookElements

Begin structure tree

<El enment Begi n..>

Begin element that contains other elements

<El enent End>

End element that contains other elements

<El ement Begi n..>

Additional statements as needed

<El enent End>

<El enent

Begin element with no subelements

<ETag tagstring>

Element tag name from Element Catalog

<EConponent i nteger>

Corresponding book component (numbering starts at 1)

<EText Sni ppet string>

Text snippet for structure window

> Endof El ement statement
<El enent ..> Additional statements as needed
> End of BookEl enents statement

Online manual

ADOBE FRAMEMAKER 7.0
MIF Statements for Structured Documents and Books

Usage

The El ement Begi n and El enent End statements define elements that contain other elements.

The El enent statement defines an element with no subelements. If the element is inserted in the book structure
from the Element Catalog, this statement includes only the ETag substatement. If the element corresponds to a book
component, this statement encodes the sequence number of the corresponding component file. If the element corre-
sponds to an unstructured component file, the ETag string value is empty. (For more information about structured
documents, see Using FrameMaker.)

MIF Messages

Invalid context specification: parameter.

There is a syntax error in an <EDCont ext Spec> statement in an element definition.

EDContainerType has an invalid value.

An <EDCont ai ner Type> statement uses an invalid value.

EDContainerType ignored for object element definition.

An element definition contains an <EDCont ai ner Type> statement but the <Obj ect Type> statement doesn’t specify
EDCont ai ner .

Value of EDObject is invalid.

An <EDbj ect > statement uses an invalid value.

General rule not allowed for object element definition.

An element definition for an object element contains an <EDGener al Rul e> statement.

Exclusions not allowed for object element definition.

An element definition for an object element contains an <EDExcl usi ons> statement.

Inclusions not allowed for object element definition.

An element definition for an object element contains an <EDI ncl usi ons> statement.

Discarding element definition--no EDTag name was specified.

An element definition has no tag name, so it is ignored.

Bad general rule for element definition: Name or '(' expected.

A general rule is invalid.

Bad general rule for: Cannot use different connectors in a group.

A general rule is invalid.

Bad general rule for:'(' expected.

A general rule is invalid.

171

Online manual

ADOBE FRAMEMAKER 7.0

MIF Statements for Structured Documents and Books

Bad general rule for element definition:')' expected.

A general rule is invalid.

Ambiguous general rule for element definition:

A general rule is invalid.

Bad general rule for element definition: Syntax Error.

A general rule is invalid.

Bad general rule for element definition: Connector (, or | or &) expected.

A general rule is invalid.

Duplicate definition: only first element definition for tag will be used.

Two or more element definitions use the same tag.

Format tag is invalid for an element of type EDEquation - defaulting to Medium.

Only small, medium, and large format tags are valid for an equation element.

Element name contains characters that are not allowed.

Element name contains at least one disallowed character, such as & | ,or*.

Invalid table tagging specification: parameter.

An element definition contains a <EDTabl eTaggi ng> statement with a syntax error.

Online manual

172

173

MIF Equation Statements

This chapter describes the MIF statements that define equations. Use it as a reference when you write filters for trans-
lating documents that include equations. For more information about creating and editing equations, see your
FrameMaker user’s manual.

Document statement

In addition to document preferences (see “Document statement” on page 82), the MIF Docunent statement
describes standard formats for equations. The equation formatting substatements correspond to settings in the
Equations palette.

Syntax

<Document See page 82

Equation sizes

<DwMat hSnal | | nt egral di mensi on> Size in points of integral symbols in small equations

<DWMat hMedi um nt egral di mensi on> Size in points of integral symbols in medium equations

<DwMat hLar gel nt egral di mensi on> Size in points of integral symbols in large equations

<Dwvat hSmal | Si gna di nensi on> Size in points of summation and product symbols in small equa-
tions

<Dwvat hMedi uni grmee di nensi on> Size in points of summation and product symbols in medium
equations

<DwMat hLar geSi gna di nensi on> Size in points of summation and product symbols in large equa-
tions

<DMvat hSmal | Level 1 di nensi on> Size in points of level 1 expression (normal level) in small equations

<Dvat hMedi unlLevel 1 di nensi on> Size in points of level 1 expression in medium equations

<DwMat hLar geLevel 1 di nensi on> Size in points of level 1 expression in large equations

<DWvat hSnal | Level 2 di nensi on> Size in points of level 2 expression (first level subscripts and super-

scripts) in small equations

<Dwvat hMedi unievel 2 di mensi on> Size in points of level 2 expression in medium equations
<Dwat hLar geLevel 2 di nensi on> Size in points of level 2 expression in large equations
<Dwvat hSnal | Level 3 di nensi on> Size in points of level 3 expression (second level subscripts and

superscripts) in small equations

<Divat hMedi uniLevel 3 di nensi on> Size in points of level 3 expression in medium equations
<Dwmat hLar geLevel 3 di nensi on> Size in points of level 3 expression in large equations
<Dwvat hSmal | Hori z i nteger > Horizontal spread for small equations expressed as a percentage of

equation’s point size; negative values decrease space and positive
values increase space

<Divat hMedi unHori z integer> Horizontal spread for medium equations

Online manual

ADOBE FRAMEMAKER 7.0 |174
MIF Equation Statements

<DMat hLar geHori z integer>

Horizontal spread for large equations

<DMat hSnal | Vert integer>

Vertical spread for small equations expressed as a percentage of
equation’s point size; negative values decrease space and positive
values increase space

<DwMat hMedi unVert integer>

Vertical spread for medium equations

<DMat hLar geVert integer>

Vertical spread for large equations

<DMat hShowCust om bool ean>

Specifies whether to show all math elements or only custom ele-
ments in Insert Math Element dialog box

<DMat hFuncti ons tagstring>

Font for functions

<DWMat hNunber s tagstring>

Font for numbers

<DMat hVari abl es tagstring>

Font for variables

<DMat hStrings tagstring>

Font for strings

<DMat hGr eek tagstring>

Font for Greek characters

<DMat hCat al og..>

Describes custom math elements (see “DMathCatalog statement,”
next)

End of Docunent statement

DMathCatalog statement

The DVat hCat al og statement describes the custom math elements in a document. It must appear in a Document

statement.

Syntax

<DMathCatalog

Lists custom math elements

<Dvat hGr eekOverri des tagstring>

Identifies a redefined Greek symbol and forces lookup on reference
page;t agst r i ng argument must match the name of reference
frame

<Dvat hGr eekOverri des tagstring>

Additional statements as needed

<DMat hOpOverri des

Identifies built-in operator with redefined display properties

<DMat hQpNane tagstring>

Name of built-in operator from reference frame

<DWMat hOpTLi neOverri de bool ean>

No uses default glyph for operator; Yes looks up operator on text
line in reference frame

<Dvat hQpPosi ti onA integer>

Position of first operand expressed as a percentage of equation
font size

<DWMat hOpPosi ti onB i nteger>

Position of second operand

<DWMat hQpPosi ti onC i nt eger >

Position of third operand

End of DVt hQpOver ri des statement

<Divat hNew

Defines new math element

Online manual

ADOBE FRAMEMAKER 7.0 |175
MIF Equation Statements

<Dvat hQpNane tagstring> Name of math element from reference frame

<DWMat hNewType keywor d> Specifies custom math element type; for a list of types, see the
chapter on creating equations in your user’s manual

keywor d can be one of:
At om

Delimter

Functi on

I nfix

Large

Limt

Post fi x

Prefix

Vertical Li st

<DVt hQpTLi neOverri de bool ean> No uses default glyph for operator; Yes looks up operator on text
line in reference frame
<DWMat hQpPosi ti onA i nteger> Position of first operand expressed as a percentage of equation
font size
<Dvat hOpPosi ti onB integer> Position of second operand
<Dvat hQpPosi ti onC int eger> Position of third operand
> End of DVt hNewstatement
> End of DVat hCat al og statement
Usage

You can define new math elements or redefine math elements that appear on the Equations palette. To create a
custom math element, add the element’s name and type to the Dvat hCat al og statement. On a reference page with
a name beginning with the word FrameMath, define the math element in a named unanchored graphic frame. In the
frame (called a reference frame), create a text line that contains one or more characters that represent the math
symbol; you can apply specialized math fonts and change the position of the characters to get the appearance you
want. You can use custom elements in equations by including them in a Mat hFul | For mstatement.

For example, to create a symbol for the set of real numbers, add the new element to the Math Catalog as follows:

<Document
<DMathCatalog
<DMathNew
Name of new math element
<DMathOpName ‘Real Numbers'>
Type of math element
<DMathNewType Atom >
> # end of DMathNew
> # end of DMathCatalog
> # end of Document

Define the custom element on a reference page that has a name beginning with FrameMath:

<Page
Create a named reference page.
<PageType ReferencePage >
<PageTag "FrameMath1'>

Create a named, unanchored frame.

Online manual

ADOBE FRAMEMAKER 7.0 | 176
MIF Equation Statements

<Frame
<FrameType NotAnchored >
<Tag ‘Real Numbers'>

Create the math element in the first text line in the frame.

<TextLine

Apply a specialized math font to the letter R.
<Font
<FTag *'>
<FFamily ‘MathematicalPi'>
<FVar "Six'>
<FWeight "Regular'>
># end of Font
<String "R'>
> # end of TextLine
> # end of Frame
> # end of Page
To insert the new element in an equation, use the char expression (see page 182) and the element’s name in a
Mat hFul | For mstatement as shown in the following equation:

<MathFullForm ‘equal[in[forall[char[x]], comma[char[(*T"Real Numbers"T*)New],
times[char([f],id[char[x]]]]], indexes[1,0,char[x],num[3.00000000,"3"]]]"

> # end of MathFullForm

The equation looks like this in the FrameMaker document:

welR, fix) = 5

You can change the appearance of a built-in math element, although you cannot change the element’s type or
behavior. For example, to redefine the built-in inverse sine function (asin) so that it appears as sin”!, add the
redefined element to the Math Catalog as follows:

<DMathCatalog
<DMathOpOverrides
The name of the built-in operator as it appears in MIF.
<DMathOpName ‘asin'>
Forces lookup from the reference page.
<DMathOpTLineOverride Yes >
> # end of DMathOpOverrides
> # end of DMathCatalog
Redefine the appearance of the element in a reference frame as follows:

<Page
Create a named reference page.
<PageType ReferencePage >
<PageTag "FrameMath1'>
Create a named, unanchored frame.

<Frame

Online manual

<FrameType NotAnchored >

ADOBE FRAMEMAKER 7.0 |177
MIF Equation Statements

The name of the built-in element as it appears in

the Equations palette.

<Tag ‘Inverse Sine'>

Define the element in the first text line in the frame.

<TextLine

Apply a new font style and position to change the

appearance of the math element.

<Font

<FTag *'>

<FWeight ‘Regular'>
># end of Font
<String “sin'>
<Font

<FTag *'>

<FWeight ‘Regular'>

<FPosition FSuperscript >

># end of Font
<String *-1 '>
> # end of TextLine
> # end of Frame
> # end of Page

When you create the reference frame that specifies the new appearance of the math element, you must give the frame
the name of the built-in element as it appears in the Equations palette. To find the name of a built-in element, choose
Insert Math Element from the equations pop-up menu on the Equations palette. Turn off Show Custom Only in the
dialog box and scroll through the element names until you find the one you want.

To use the redefined element in an equation, include the asi n expression (see page 186) along with the name of the

reference frame as follows:

<MathFullForm ‘asin[(*T"Inverse Sine"T*)char[x]]’

> # end of MathFullForm

For more information about including custom operators in equations, see “Custom operators” on page 196. For

more information about format codes, see “MathFullForm statement syntax” on page 179.

Math statement

A Mat h statement describes an equation within a document. It can appear at the top level or within a Page or Fr ane

statement.

Syntax

<Math

Ceneric object statenents

Information common to all objects (see page 101)

<Angl e integer>

Angle of rotation in degrees:0,90,180,270

<ShapeRect L T WH>

Position and size of bounding rectangle, before rotation, in enclosing
page or frame

Online manual

ADOBE FRAMEMAKER 7.0
MIF Equation Statements

<mMat hFul | For m string> Description of equation (defined in “MathFullForm statement syntax”
on page 179)
<Mat hLi neBr eak di nensi on> Allows automatic line breaks after this position
<MathOrigin X Y> Position of equation in current frame or page
<Mat hAl i gnnment keywor d> Alignment of equation within ShapeRect
keywor d can be one of:
Left
Center
Ri ght
Manual
<Mat hSi ze keyword> Equation size (defined on page 173)
keywor d can be one of:
Mat hLar ge
Mat hMedi um
Mat hSnal |
> End of Mat h statement

Usage

Values of the ShapeRect statement specify the coordinates and size of the bounding rectangle before it is rotated.
The equation is rotated by the value specified in an Angl e statement. The Mat hFul | For mstring defines the mathe-
matical properties of the equation. For a complete description, see “MathFullForm statement,” next.

Whenever you save a document as a MIF file using the Save As command, FrameMaker writes all the Mat h substate-
ments, except CbCol or, to the file. It writes an CbCol or statement only when the equation is in a color other than
black. The ObCol or statement specifies the color for the entire equation object. To specify color for an individual
element within an equation, use the formatting code (*qgstringg*) (see “MathFullForm statement syntax” on
page 179).

If you are writing an output filter for converting FrameMaker equations to a format used by another application, you
might be able to ignore some of the Mat h substatements. You don’t need MIF statements for FrameMaker’s math
features that are unsupported by another application.

If you are writing an input filter for converting equations created with another application to FrameMaker equations,
you must provide a ShapeRect or Mat hOr i gi n substatement to specify the equation’s location on the page. The

other Mat h substatements are not required. If you don’t provide them, the MIF interpreter uses preset values. If you
don’t define the equation in a Mat hFul | For mstatement, an equation prompt appears in the FrameMaker document.

MathFullForm statement

The Mat hFul | For mstatement consists of a string containing a series of expressions that define the mathematical
structure of an equation. Each expression defines a component of the equation and can be nested within other
expressions.

Online manual

178

ADOBE FRAMEMAKER 7.0 |179

MIF Equation Statements

A sample MathFullForm statement

This example shows an equation and the Mat hFul | For mstatement that defines it. The diagram shows the hierarchy
of the Mat hFul | For mstatement. Symbols that appear in the equation are shown in parentheses following the
Mat hFul | For mexpression.

y = a(x+b)’

<MathFullForm " equal[char[y],times[char[a],power[id[plus[char[x],char[b]]],num[2,"2"]]]]
> # end of MathFullForm

equalll (=)
char (y) tin|1es
char (a) p?wer
| |
id num (2)
(par ent heses)
plus (+)
I
char (x) char (b)

MathFullForm statement syntax

In addition to the mathematical structure of the equation, a Mat hFul | For mstatement can contain special instruc-
tions for character formatting, manual alignment points, and positioning and spacing values. Expressions have the
following syntax:

Expr essi onNane[(*For mat Codes*)oper and,oper and,...]

Where Is

Expr essi onNane The expression name (for example, abs)

For mat Codes Optional formatting codes (for example,i 2i), described next
oper and Another expression

Formatting codes are enclosed within asterisk (*) delimiters. If an expression doesn’t contain formatting codes, it
cannot contain asterisks. Formatting codes consist of a pair of flags enclosing a numeric value or string, except for
boolean flags, which are a single flag. For example, the following expression contains formatting codes that select a
display format and a boolean flag to set a manual line break point:

<MathFullForm ‘id[(*i2i*)char[x]]'>
String values in format codes must be enclosed in straight, double quotation marks ("). To include characters in the
extended ASCII range (above 0x127), use a backslash sequence (see “Character set in strings” on page 7).

Online manual

ADOBE FRAMEMAKER 7.0

MIF Equation Statements

You can use the following formatting codes, which can appear in any order. The default for all numeric values is 0.

Format code Meaning

Ainteger A Manual alignment mark in element (O=none, 1=right, 2=left)

bretrichb Extra space at bottom of expression; corresponds to Spacing values in the Position Settings dia-
log box

Bstri ngB Font angle (for example," I tal i c")

cint eger c Alignment for horizontal lists and matrices (O=baseline, 1=top, 2=bottom)

Cinteger C Character case

Dint eger D Double underline (0=no underline, 1=underline)

fstringf Font family (for example, f " Ti mes" f)

ii ntegeri Display format number (0, 1,2)

j int egerj Alignment for vertical lists and matrices (O=center, 1=left, 2=right, 3=at equal symbol, 4=left of
equal symbol)

lnetricl Extra space to left of expression; corresponds to Spacing values in the Position Settings dialog
box

M In a matrix, makes all column widths equal (boolean)

m In a matrix, makes all row heights equal (boolean)

n No automatic parentheses (boolean)

Nint eger N Numeric underline (0=no underline, 1=underline)

ointeger o Outline (0=no outline, 1=outline)

Oint eger O Overline (0O=no overline, 1=overline)

qstringq Color name (for example," Red")

rmetricr Extra space to right of expression; corresponds to Spacing values in the Position Settings dialog
box

Rinteger R Shadow (0=no shadow, 1=shadow)

sdeci mal s Character size in points (for example,s12. 00s)

SintegersS Strikeout (0=no strikeout, 1=strikeout)

tnetrict Extra space at top of expression; corresponds to Spacing values in the Position Settings dialog
box

TstringT Name of custom element from reference page frame

u Manual line break to left (boolean)

Uint eger U Underline (0O=no underline, 1=underline)

v Manual line break to right (boolean)

vstri ngv Font variation (for example," Nar r ow")

Wstringw Font weight (for example,” Bol d")

xmetricx Horizontal kern value

Online manual

180

ADOBE FRAMEMAKER 7.0
MIF Equation Statements

Format code Meaning

ymetricy Vertical kern value

When expressions have multiple display formats, there is one default format. Additional formats are numbered. For
example, the i d expression has three display formats.

Example MathFullForm statement
(x) <Mat hFul | Form “id[char[x]]"' >
[x] <MathFullForm “id[(*ili*)char[x]]" >
{x} <MathFullForm " id[(*i2i*)char[x]]' >
Atomic expressions

Atomic expressions are expressions that don’t take other expressions as operands. They usually act as operands in
more complex expressions.

prompt

pronpt is a placeholder to show an expression’s undefined operands. Of the character formatting specifications,
only kerning values affect the appearance of a prompt.

Example MathFullForm statement
? <MathFullForm * prompt[]' >
num

numdescribes a number. It always has two operands: the first shows the number as used for computations (internal
precision), and the second shows the number as displayed. When fewer digits are displayed than are used internally,
an ellipsis appears after the number.

Example MathFullForm statement

31415927 <MathFullForm *num[3.141592653589793,"3.1415927"]' >

There are two special cases of the numexpression.

Example MathFullForm statement
Infinity <MathFullForm * num/[Infinity,"Infinity"]"' >
NaN <MathFullForm " num|[NaN,"NaN"]"' >

NaN means not a number. These forms of numusually result from computations.

181

Online manual

string

ADOBE FRAMEMAKER 7.0
MIF Equation Statements

string contains a character string. Character strings must be enclosed in straight, double quotation marks ("). To

include characters in the extended ASCII range (above 0x127), use a backslash sequence (see “Character set in

strings” on page 7). To include a straight, double quotation mark, precede the quotation mark with a straight, double

quotation mark.

Example

MathFullForm statement

Fr ameMat h

<MathFullForm *

string["FrameMath"]' >

usi ng "quot es"

<MathFullForm ‘string["using

quotes"""]'>

char

char describes a character.

Example

MathFullForm statement

X

<MathFullForm *

char[x]' >

The char expression can contain one of the letters a through z, one of the letters A through Z, a custom math

element, or one of the character names shown in the following table.

Example MathFullForm statement

N <MathFullForm * char[aleph]'>

a <MathFullForm * char[alpha]'>

B <MathFullForm " char[beta]' >

L <MathFullForm * char[bot]'>

X <MathFullForm * char[chi]' >

9 <MathFullForm * char[cpartial]' >
o <MathFullForm " char[degree]' >
S <MathFullForm " char[delta]' >

A <MathFullForm * char[Delta]' >
1% <MathFullForm * char[emptyset]' >
€ <MathFullForm * char[epsilon]' >
n <MathFullForm " char[eta]' >

v <MathFullForm * char[gamma]' >
T <MathFullForm * char[Gamma]' >

Online manual

182

ADOBE FRAMEMAKER 7.0 | 183
MIF Equation Statements

Example MathFullForm statement

X <MathFullForm * char[Im]" >

0 <MathFullForm * char[infty]"' >

L <MathFullForm " char[iota]' >

K <MathFullForm * char[kappa]' >

A <MathFullForm " char[lambda]' >

A <MathFullForm * char[Lambda]' >
<MathFullForm * char[ldots]' >
<MathFullForm * char[mu]' >

\v/ <MathFullForm * char[nabla]' >

v <MathFullForm " char[nu]'>

® <MathFullForm * char[omega]' >

Q <MathFullForm * char[Omega]' >
<MathFullForm * char[phi]' >

10} <MathFullForm * char[Phi]' >

B <MathFullForm " char[pi]' >

II <MathFullForm * char[Pi]' >

" <MathFullForm * char[pprime]' >

' <MathFullForm * char[prime]' >

P <MathFullForm * char[psi]' >

v <MathFullForm * char[Psi]' >

R <MathFullForm " char[Re]' >

p <MathFullForm * char[rho]' >

o <MathFullForm * char[sigma]' >

> <MathFullForm * char[Sigma]'>

T <MathFullForm * char[tau]' >

Online manual

ADOBE FRAMEMAKER 7.0
MIF Equation Statements

Example MathFullForm statement

0 <MathFullForm * char[theta]' >

[} <MathFullForm ® char[Theta]' >

v <MathFullForm * char[upsilon]' >
Y <MathFullForm * char[Upsilon]' >
@ <MathFullForm * char[varphi]'>
o <MathFullForm * char[varpi]' >

c <MathFullForm * char[varsigma]' >
9 <MathFullForm ® char[vartheta]' >
% <MathFullForm * char[wp]'>

E <MathFullForm * char[xi]' >

= <MathFullForm * char[Xi]' >

C <MathFullForm * char[zeta]' >

Using char for custom math elements

184

The char expression can contain a custom math element by using the following syntax:

<MathFullForm * char[(*T"El ement Nane"T*)New]' >

where El ement Nane is the name of the reference frame that contains the custom element.

Using char and diacritical for diacritical marks

The char and the diacritical expressionsboth describe diacritical marks around an operand.

The char expression places diacritical marks around a single operand, as shown in the following table. The char
expression is backward-compatible.

Example <MathFullForm> statement

;C <MathFullForm * char[x,1,0,0,0,0]" >
X <MathFullForm * char[x,2,0,0,0,0]"' >
x <MathFullForm * char[x,3,0,0,0,0]" >
X' <MathFullForm * char[x,0,1,0,0,0]" >
X" <MathFullForm * char[x,0,2,0,0,0]" >
P <MathFullForm * char[x,0,3,0,0,0]" >

Online manual

ADOBE FRAMEMAKER 7.0
MIF Equation Statements

Example <MathFullForm> statement

x <MathFullForm * char([x,0,0,1,0,0]" >
x <MathFullForm * char[x,0,0,2,0,0]" >
x <MathFullForm " char[x,0,0,3,0,0]" >
;C <MathFullForm * char[x,0,0,0,1,0]" >
x <MathFullForm * char[x,0,0,0,0,1]"' >
x <MathFullForm * char[x,0,0,0,0,2]" >

The char expression can also describe composite diacritical marks. The following table contains examples.

Example MathFullForm statement
;C <MathFullForm * char[x,1,0,0,0,2]"' >
X' <MathFullForm * char([x,3,1,0,0,2]"' >

The di acritical expression places diacritical marks around multiple operands and describes two additional
diacritical marks. The di acriti cal expression describes the same marks that the char expression describes, but it
can take multiple operands. In addition, the di acri ti cal expression describes two forms of diacritical mark not
described by the char expression. The following table shows examples of di acri ti cal expressions.

Example MathFullForm statement

;C <MathFullForm “diacritical[4,0,0,0,0,char[x]]'>

,)-C\ <MathFullForm “diacritical[5,0,0,0,0,char[x]]'>

— <MathFullForm “diacritical[4,0,0,0,0,times[char[A],char[B]]]'>
AB

Thedi acritical expression is not backward compatible. When an earlier version (previous to 4.x) of FrameMaker
reads a MIF file saved in version 4 or later of FrameMaker, any equations that contain di acri ti cal expressions are lost.
You should edit any Mat hFul | For mstatements that contain di acri ti cal expressions before opening the file in earlier
versions of FrameMabker. For more information, see “Math statements” on page 245.

dummy

The dummy expression describes a dummy variable that you can use as a placeholder in equations. For example, in
the following equation, 7 is a dummy variable:

4

i 2. 3 4
Ex = l+x+x +x +x
i=0

Online manual

185

ADOBE FRAMEMAKER 7.0 | 186
MIF Equation Statements

The dummy expression has the same syntax as the char expression and can contain the same character symbols or

names.

Example MathFullForm statement

x <MathFullForm * dummy[x]' >
Operator expressions

Operator expressions take at least one expression as an operand. There are no restrictions on the complexity of

operator expressions, and they are not restricted by any concepts of domain or typing.

Unary operators

Unary operators have one expression as an operand. Three of the unary operators—i d, | par en,and r par en—have

multiple display formats. The following table contains an example of each unary operator (in all of its display

formats) with char [x] as a sample operand.

Example MathFullForm statement

|x| <MathFullForm *abs[char[x]]' >
2COSX <MathFullForm " acos[char[x]]"'>
acoshx <MathFullForm " acosh[char[x]]' >
acotx <MathFullForm " acot[char[x]]' >
acothx <MathFullForm " acoth[char[x]]' >
acscx <MathFullForm " acsc[char[x]]' >
acschx <MathFullForm *acsch[char[x]]"'>
/x <MathFullForm *angle[char[x]]" >
argx <MathFullForm ‘arg[char[x]]">
asecx <MathFullForm " asec[char[x]]' >
asechx <MathFullForm " asech[char[x]]"' >
asinx <MathFullForm "asin[char[x]]' >
asinhx <MathFullForm *asinh[char[x]]' >
X <MathFullForm " ast[char[x]]' >
atanx <MathFullForm " atan[char[x]]' >
atanhx <MathFullForm " atanh[char[x]]' >
Ox <MathFullForm *box[char[x]]"'>

Online manual

ADOBE FRAMEMAKER 7.0
MIF Equation Statements

Example MathFullForm statement

sz <MathFullForm *box2[char[x]]">

Oex <MathFullForm " boxdot[char[x]]' >

<x‘ <MathFullForm *bra[char[x]]' >

|‘x‘| <MathFullForm " ceil[char[x]]' >

Ax <MathFullForm * change[char[x]]' >

COSX <MathFullForm * cos[char[x]]' >

coshx <MathFullForm * cosh[char[x]]' >

cotx <MathFullForm " cot[char[x]]"' >

cothx <MathFullForm * coth[char[x]]"'>

csex <MathFullForm * csc[char[x]]" >

cschx <MathFullForm " csch[char[x]]">

Vxx <MathFullForm * curl[char[x]]' >

X <MathFullForm " dagger[char[x]]' >

<x> <MathFullForm *dangle[char[x]]"'>

dx <MathFullForm " diff[char[x]]' >

Vex <MathFullForm " diver[char[x]]' >

,; <MathFullForm * downbrace[char[x]]' >

expx <MathFullForm ‘exp[char[x]]'>

Ix <MathFullForm " exists[char[x]]"' >

x! <MathFullForm " fact[char[x]]"' >

LxJ <MathFullForm " floor[char[x]]"'>

Vi <MathFullForm " forall[char[x]]' >

(x) <MathFullForm "id[char[x]]"' >

[x] <MathFullForm *id[(*ili*)char[x]]" >
<MathFullForm " id[(*i2i*)char[x]]' >

187

Online manual

ADOBE FRAMEMAKER 7.0 | 188
MIF Equation Statements

Example MathFullForm statement

imagx <MathFullForm ‘imag[char[x]]'>

‘x> <MathFullForm " ket[char[x]]' >

V2 <MathFullForm *lap[char[x]]' >

Inx <MathFullForm ‘In[char[x]]"'>

(x <MathFullForm *lparen[char[x]]' >

[x <MathFullForm *lparen[(*ili*)char[x]]' >
{x <MathFullForm *lparen[(*i2i*)char[x]]' >
— <MathFullForm * minus[char[x]]' >

Ix <MathFullForm * mp[char[x]]' >

—x <MathFullForm " neg[char[x]]' >

"x" <MathFullForm *norm([char(x]]" >

)_C <MathFullForm *overline[char[x]]' >

dx <MathFullForm * partial[char[x]]" >

+x <MathFullForm * pm[char[x]]' >

real x <MathFullForm ‘real[char[x]]'>

x) <MathFullForm *rparen[char[x]]"'>

x] <MathFullForm *rparen[(*ili*)char[x]]" >
x} <MathFullForm " rparen[(*i2i*)char[x]]"' >
secx <MathFullForm " sec[char[x]]' >

sechx <MathFullForm " sech[char[x]]" >

X <MathFullForm *semicolon[char[x]]"'>
sgnx <MathFullForm *sgn[char[x]]">

sinx <MathFullForm "sin[char[x]]' >

sinhx <MathFullForm " sinh[char[x]]' >

tanx <MathFullForm " tan[char[x]]' >

Online manual

ADOBE FRAMEMAKER 7.0 | 189
MIF Equation Statements

Example MathFullForm statement

tanh x <MathFullForm *tanh[char([x]]' >

i x <MathFullForm " therefore[char[x]]"' >
X <MathFullForm *ucomma(char[x]]"' >
= 5 <MathFullForm *uequal[char[x]]" >

x <MathFullForm *upbrace[char[x]]" >
S

Sx <MathFullForm " var[char[x]]'>

Binary operators

Binary operators have two operand expressions. One of the binary operators, sn (scientific notation), has two display
formats. The following table contains an example of each binary operator with char [x] as a sample operand.

Example MathFullForm statement
{xx} <MathFullForm *acmut[char[x],char[x]]" >
x®x <MathFullForm " bullet[char[x],char[x]]' >
<x‘x> <MathFullForm " bket[char[x],char[x]]'>
X <MathFullForm " choice[char[x],char[x]]' >
#
[x,x] <MathFullForm * cmut[char[x],char[x]]" >
XX X <MathFullForm " cross[char[x],char[x]]' >
X+ x <MathFullForm " div[char[x],char[x]]' >
x/x <MathFullForm * fract[char[x],char[x]]" >
x(x) <MathFullForm " function[char[x],char[x]]"' >
ax <MathFullForm * function[oppartial[char[x]],char[x]]" >*?
dax
e <MathFullForm * function[optotal[char[x]],char[x]]" >
dx
(x’x) <MathFullForm ' inprod[char[x],char[x]]'>
limx <MathFullForm *lim[char[x],char[x]]' >
x

Online manual

ADOBE FRAMEMAKER 7.0
MIF Equation Statements

Example MathFullForm statement

x <MathFullForm *over[char[x],char[x]]' >
X

e <MathFullForm * power[char[x],char[x]]" >

xx10"

<MathFullForm " sn

[char[x],char[x]]" >

xEx

<MathFullForm

‘sn[(*ili*)char([x],char[x]]' >

a. Partial and full differentials are a special case of f UNCt i ON.

N-ary operators

N-ary operators have two or more operand expressions. When one of these operators has more than two operands,
FrameMaker displays an additional operand symbol for each operand expression. For example, the following table
shows several forms of pl us.

Example MathFullForm statement

1+2 <MathFullForm ‘plus[num[1,"1"],num(2,"2"]]" >

1+2+3 <MathFullForm * plus[num[1,"1"],num([2,"2"],num(3,"3"]]"' >
1+2+3+4 <MathFullForm * plus[num[1,"1"],num([2,"2"],num([3,"3"],num(4,"4"]]"' >

The following table contains an example of each n-ary operator. Each example shows two operands.

Example MathFullForm statement

<MathFullForm *atop[char[x],char[x]]">
X=X <MathFullForm *approx|[char[x],char[x]]" >
xNx <MathFullForm * cap[char([x],char[x]]" >
Xx-x <MathFullForm * cdot[char[x],char[x]]" >
X, X <MathFullForm * comma/([char[x],char[x]]" >
x=x <MathFullForm * cong[char[x],char[x]]" >
xUx <MathFullForm * cup[char[x],char[x]]">
x = x <MathFullForm *equal[char[x],char[x]]' >
x=x <MathFullForm *equiv[char[x],char[x]]">
x=x <MathFullForm * geq[char[x],char[x]]" >

Online manual

190

ADOBE FRAMEMAKER 7.0 | 191
MIF Equation Statements

Example MathFullForm statement

Xx»x <MathFullForm * gg[char[x],char[x]]' >

x> x <MathFullForm " greaterthan[char[x],char[x]]" >
xE x <MathFullForm "in[char[x],char[x]]' >

x O x <MathFullForm jotdot[char[x],char[x]]" >

X< x <MathFullForm " leftarrow[char[x],char[x]]" >

X <= x <MathFullForm * Leftarrow[char[x],char[x]]'>
x<x <MathFullForm *leq[char[x],char[x]]">

x<x <MathFullForm " lessthan[char[x],char[x]]' >

x <MathFullForm " list[char[x],char[x]]' >

X &KX <MathFullForm *1ll[char[x],char[x]]" >

X <> x <MathFullForm " lrarrow[char[x],char[x]]" >

x < x <MathFullForm * LRarrow[char[x],char[x]]"'>
X3 x <MathFullForm " ni[char[x],char[x]]" >

XX <MathFullForm ' notequal[char[x],char[x]]" >
x€&x <MathFullForm *notin[char[x],char[x]]' >

x ¢ x <MathFullForm " notsubset[char[x],char[x]]' >
x@®x <MathFullForm *oplus[char[x],char[x]]' >

x® x <MathFullForm " otimes[char[x],char[x]]' >

X || x <MathFullForm " parallel[char[x],char[x]]' >

x 1 x <MathFullForm " perp[char[x],char[x]]'>

X+ x <MathFullForm * plus[char[x],char[x]]"' >

x—x <MathFullForm ‘plus[char[x],minus[char[x]]]" >
X o€ x <MathFullForm * propto[char[x],char[x]]'>
x— x <MathFullForm " rightarrow([char[x],char[x]]"' >
x= x <MathFullForm * Rightarrow[char[x],char[x]]' >

Online manual

ADOBE FRAMEMAKER 7.0 | 192
MIF Equation Statements

Example MathFullForm statement

X ~x <MathFullForm *sim[char[x],char[x]]" >
xCx <MathFullForm " subset[char[x],char[x]]"' >
xCx <MathFullForm *subseteq[char[x],char[x]]" >
xDx <MathFullForm *supset[char[x],char[x]]' >
xDx <MathFullForm *supseteq[char[x],char[x]]' >
XX <MathFullForm " times[char[x],char[x]]' >
XV x <MathFullForm *vee[char[x],char[x]]'>

XA X <MathFullForm *wedge[char[x],char[x]]" >
Large operators

Large operator expressions have one primary operand. In addition, they can have one or two range operands. The

following table contains an example of each large operator with only one operand with char [x] as a sample

operand.

Example MathFullForm statement
Nx <MathFullForm " bigcap[char[x]]' >
Ux <MathFullForm " bigcup[char[x]]' >

<MathFullForm *

int[char[x]]' >

<MathFullForm

‘oint[char[x]]" >

<MathFullForm

‘prod[char[x]]' >

Ex

<MathFullForm *

sum|[char[x]]' >

Expressions with range operands have multiple display formats that change how operands are positioned around the

symbol. Extended unions and intersections have two display formats. The formats are the same for both expressions;

as an example, the following table shows the two display formats for an intersection with three operands:

Example MathFullForm statement

3
N1

2

<MathFullForm *bigcap[num[1.0,"1"],num[2.0,"2"],num(3.0,"3"]]" >

Online manual

ADOBE FRAMEMAKER 7.0
MIF Equation Statements

Example MathFullForm statement
031 <MathFullForm
2 *bigcap[(*ili*)num[1.0,"1"],num[2.0,"2"],num(3.0,"3"]]"' >

Sums, products, and integrals have three display formats. The formats are the same for all of these operators; as an

example, the following table shows the display formats for an integral with three operands.

Example

MathFullForm statement

<MathFullForm "int[char[x],char[a],char[b]]' >

<MathFullForm " int[(*ili*)char[x],char[a],char[b]]' >

<MathFullForm " int[(*i2i*)char[x],char[a],char[b]]' >

Expressions with optional operands

Some expressions have optional operands. In these expressions, the optional operands follow the primary operand.
The following table contains an example of each expression with optional operands.

Example MathFullForm statement

Vx <MathFullForm * grad[char[x]]"' >

V21 <MathFullForm * grad[num[1,"1"],num([2,"2"]]" >
logx <MathFullForm *log[char[x]]' >

logxx <MathFullForm *log[char[x],char[x]]" >

9 <MathFullForm *oppartial[char[x]]' >
ax

ax <MathFullForm *oppartial[char([x],char[x]]" >
Ix
<MathFullForm " optotal[char[x]]' >

d P

dx

dx <MathFullForm *optotal[char[x],char[x]]" >
dx

<MathFullForm *sqrt[char[x]]'>

Online manual

193

ADOBE FRAMEMAKER 7.0 | 194
MIF Equation Statements

Example MathFullForm statement

’f\/;c <MathFullForm *sqrt[char[x],char[x]]'>

xl <MathFullForm " substitution[char[x]]' >

xlx <MathFullForm " substitution[char[x],char[x]]' >

xlx <MathFullForm " substitution[char[x],char[x],char[x]]' >
X

For partial and full differentials (such as % and %), see page 189.
X

Indexes

There are three expressions for describing indexes: i ndexes, chem and t ensor .

indexes: The i ndexes expression describes any number of subscripts and superscripts. The first operand is the
number of superscripts and the second operand is the number of subscripts. Subsequent operands define the
subscripts and then the superscripts.

Note that the number of superscripts is listed before the number of subscripts. However, superscript operands are listed

after subscript operands.

The following table contains an example of each i ndexes form.

Example MathFullForm statement
x, <MathFullForm " indexes[0,1,char[x],num[1,"1"]]' >
X1, <MathFullForm " indexes[0,2,char[x],num[1,"1"],num([2,"2"]]" >
1 <MathFullForm " indexes[1,0,char[x],num[1,"1"]]' >
X
12 <MathFullForm "indexes[2,0,char[x],num[1,"1"],num([2,"2"]]" >
X
2 <MathFullForm "indexes[1,1,char[x],num[1,"1"],num([2,"2"]]" >
X1
34 <MathFullForm
*12 ‘indexes[2,2,char[x],num[1,"1"],num[2,"2"],num[3,"3"],num[4,"4"]]' >

chem: The chemexpression defines pre-upper and pre-lower indexes, subscripts, and superscripts. Each position
can have one expression. The following table shows all possible forms of chem

Example MathFullForm statement

X <MathFullForm * chem[1,0,0,0,char[x],num[1,"1"]]" >
1 <MathFullForm * chem[0,0,1,0,char[x],num[1,"1"]]" >
X

Online manual

ADOBE FRAMEMAKER 7.0 | 195
MIF Equation Statements

Example MathFullForm statement

1 <MathFullForm * chem][1,0,1,0,char[x],num[1,"1"],num[2,"2"]]" >
ZX

1% <MathFullForm " chem][1,1,0,0,char[x],num[1,"1"],num[2,"2"]]" >
12 <MathFullForm " chem[0,0,1,1,char[x],num[1,"1"],num[2,"2"]]"' >
X

1 <MathFullForm

2%3 ‘chem|[1,1,1,0,char[x],num([1,"1"],num(2,"2"],num[3,"3"]]"' >

12 <MathFullForm

3% *chem([1,0,1,1,char[x],num/[1,"1"],num([2,"2"],num(3,"3"]]' >

12 <MathFullForm

3% ‘chem|1,1,1,1,char[x],num[1,"1"],num[2,"2"],num|[3,"3"],num[4,"4"]]"' >

tensor: The t ensor expression represents specially formatted tensor notation. The first operand describes the

position of the tensor indexes; subsequent operands define the indexes. The leftmost tensor index corresponds to the
least significant bit of the first operand in binary format; the rightmost index corresponds to the most significant bit.
0 is the subscript position; 1 is the superscript position. The following table shows forms of t ensor .

Example MathFullForm statement
2 <MathFullForm " tensor[2,char[x],num[1,"1"],num([2,"2"]]" >
X
1 <MathFullForm " tensor[1l,char[x],num[1,"1"],num/[2,"2"]]" >
X3
1 <MathFullForm " tensor[1l,char[x],num[1,"1"],num(2,"2"],num[3,"3"]]"' >
X 23
23 <MathFullForm " tensor[6,char[x],num[1,"1"],num([2,"2"],num|[3,"3"]]' >
X
2 <MathFullForm " tensor[2,char[x],num[1,"1"],num([2,"2"],num|[3,"3"]]' >
X1 3
13 <MathFullForm " tensor[5,char[x],num[1,"1"],num([2,"2"],num[3,"3"]]' >
X2
3 <MathFullForm " tensor[4,char[x],num[1,"1"],num[2,"2"],num[3,"3"]]"' >
X12
12 <MathFullForm " tensor[3,char[x],num[1,"1"],num([2,"2"],num|[3,"3"]]"' >
X
3

Online manual

ADOBE FRAMEMAKER 7.0 | 196
MIF Equation Statements

Matrices

The mat ri x expression defines a matrix. The first operand is the number of rows in the matrix; the second operand
is the number of columns. Subsequent operands are expressions representing the elements of the matrix. The
elements are listed from left to right and from top to bottom. The mat r i x expression has an alternate display format.
The following table shows examples of mat ri x.

Example MathFullForm statement

[] <MathFullForm " matrix[1,1,char[x]]' >
X

<MathFullForm * matrix[(*ili*)1,1,char[x]]' >

X

- <MathFullForm

123 *matrix[2,3,num[1,"1"],num([2,"2"],num[3,"3"],num([4,"4"],num[5,"5"],n
145 6 um[6,"6"]]" >

- <MathFullForm

12 ‘matrix[3,2,num[1,"1"],num([2,"2"],num[3,"3"],num(4,"4"],num[5,"5"],n
34 um(6,"6"]]' >

El 6

Custom operators

The following expressions allow you to use custom operators that have been defined on a math reference page:

Expression Definition

newinfix[x,y] Inserts custom infix operator
newprefix[x] Inserts custom prefix operator
newpostfix[x] Inserts custom postfix operator
newfunction[x] Inserts custom function operator
newlarge[x,y,z] Inserts custom large element
newdelimiter[x] Inserts custom delimiter
newlimit[x,y] Inserts custom limit function
newvlist[x,y,z] Inserts custom vertical list

The expressions that insert new custom operators must include the name of the custom operator from the reference
page. For example, suppose a document has a custom operator MyFunct i on that is added to the Dvat hCat al og
statement as follows:

<DMathCatalog
<DMathNew
Names the new operator
<DMathOpName "MyFunction'>
Specifies the operator type
<DMathNewType Function>
> # end of DMathNew

Online manual

ADOBE FRAMEMAKER 7.0
MIF Equation Statements

> # end of DMathCatalog
The corresponding Mat hFul | For mstatement appears as follows:

<MathFullForm ‘newfunction[(*T"MyFunction"T*)[char[x]]]">

You do not use one of the custom operator expressions to insert a redefined math operator in an equation. Instead,
you use the expression for the built-in operator, but force FrameMaker to use the new symbol from the reference
page. For example, suppose you redefine the built-in operator asi n and add it to the Math Catalog as follows:

<DMathCatalog
<DMathOpOverrides
Names the built-in operator
<DMathOpName ‘asin'>
Forces lookup from reference page
<DMathOpTLineOverride Yes>
> # end of DMathOpOverrides
> # end of DMathCatalog
You would use the following Mat hFul | For mstatement:

<MathFullForm ‘asin[(*T"Inverse Sine"T*)oper ands]'>
where the string " I nver se Si ne" is the name given to the frame on the reference page.

Sample equations

The following examples show Mat hFul | For mstatements for complete equations.

Example 1

_ —b=xJb?2-4ac

X =

2a
<MathFullForm
‘equal[char[x],over[plus[minus[char[b]],pm[sqrt[plus[power[char[b],num[2,"2"]],minus[times[num[4,"4"],
char[a],char[c]]]]]]],times[num[2,"2"],char[a]]]]' >
Example 2

_ M

ol~[1+ _(X-R) ™ /(o(Ey = E,))

20%(E, — E|)M?

<MathFullForm
‘approx[power[char[sigma],minus[num/[1,"1"]]],fract[id[plus[num[1,"1"],times[over[id[plus[char[X],minus
[char[R]]]],times[num[2,"2"],power[char[sigma],num([2,"2"]],id[rightarrow[indexes[0,1,char[E],num[0,"0"]
],indexes[0,1,char[E],num[1,"1"]]]]]],over[indexes[0,]1,char[M],num[2,"2"]],power[indexes[0,1,char[M],nu
m[1,"1"]],num(2,"2"]]]]]],id[times[char[sigma],id[rightarrow[indexes[0,1,char[E],num[0,"0"]],indexes[0,1,c
har[E],num[1,"1"]]]]]1]]" >

197

Online manual

198

MIF Asian Text Processing Statements

This chapter describes the MIF statements used to express Asian text in a document. It includes character encoding
statements, combined Asian and Western fonts, Kumihan tables, and rubi text.

Asian Character Encoding

Western text in a MIF file is written out as 7-bit ASCII. However, 7-bit encoding is insufficient for Asian text. Asian
text in MIF files is represented by double-byte encoding. There are different encoding schemes for each supported
language, and the MIF file must include a statement that can be used to determine which encoding to use.

The MIF file can be edited with an Asian-enabled text editor on the platform on which the MIF was written. If the
text in a MIF file is in more than one Asian language, then only the language of the MIF encoding statement will be
directly readable in a text editor. All other non 7-bit ASCII text will be backslashed escaped using the MIF backslash
X convention.

MIFEncoding statement for Japanese

FrameMaker recognizes two encoding schemes for Japanese; Shift-JIS and EUC. The Macintosh and Windows
versions of FrameMaker write Shift-JIS for Japanese text, and the UNIX versions of FrameMaker write out EUC. The
MIF can converted between Shift-]JIS and EUC using a Japanese text conversion utility. The MIF encoding statement
is converted along with the text in the MIF file.

To determine which encoding was used, each MIF file that contains Japanese text must include a M FEncodi ng
statement near the beginning of the file. It must appear before any Japanese text in the file. The string value in the
M FEncodi ng statement is the Japanese spelling of the word “Nihongo,” which means Japanese. FrameMaker reads
this fixed string and determines what the encoding is for it. From that, FrameMaker expects the same encoding to be
used for all subsequent 8-bit text in the document.

To see the characters spelling the word Nihongo, you must view the MIF file on a system that is enabled for Japanese
character display. When the MIF is displayed on a Roman system, the characters appear garbled.

Syntax

<MIFEncoding® HFEE >+ originally written as Japanese (Shift-JIS)
<MIFEncoding " BEEE >+ originally written as Japanese (EUC)

MIFEncoding statement for Chinese

FrameMaker recognizes three encoding schemes for Chinese; Big5 and CNS for Traditional Chinese, and GB2312-
80 for Simplified Chinese. The Macintosh and Windows versions of FrameMaker write Big5 for Traditional Chinese
text, and the UNIX versions of FrameMaker write out CNS for Traditional Chinese text. All platform versions of
FrameMaker write GB2312-80 for Simplified Chinese.

To determine which encoding was used, each MIF file that contains Chinese text must include a M FEncodi ng
statement near the beginning of the file. It must appear before any Chinese text in the file. The string value in the
M FEncodi ng statement is the Chinese spelling of the word “Chinese”. FrameMaker reads this fixed string and deter-
mines what the hexadecimal encoding is for it. From that, FrameMaker expects the same encoding to be used for all
subsequent Asian text in the document.

Online manual

ADOBE FRAMEMAKER 7.0
MIF Asian Text Processing Statements

To see the characters spelling the word “Chinese”, you must view the MIF file on a system that is enabled for Chinese
character display. When the MIF is displayed on a Roman system, the characters appear garbled.

Syntax

<MIFEncoding* EF‘}t ‘> # originally written as Traditional Chinese (Big5)
<MIFEncoding * ':F'}t ‘> # originally written as Traditional Chinese (CNS)
<MIFEncoding * EP?[‘> # originally written as Simplified Chinese

MIFEncoding statement for Korean

FrameMaker recognizes one encoding scheme for Korean: KSC5601. All platform versions of FrameMaker write
KSC5601 for Korean.

Each MIF file that contains Korean text must include aM FEncodi ng statement near the beginning of the file. It must
appear before any Korean text in the file. The string value in the M FEncodi ng statement is the Korean spelling of
the word “Korean.” FrameMaker reads this fixed string and determines what the hexadecimal encoding is for it. From
that, FrameMaker expects the same encoding to be used for all subsequent Asian text in the document.

To see the characters spelling the word “Korean.”, you must view the MIF file on a system that is enabled for Korean
character display. When the MIF is displayed on a Roman system, the characters appear garbled.

Syntax
oy M
<MIFEncoding ‘?.l::?(ﬂB # originally written as Korean

Combined Fonts

Combined fonts assign two component fonts to one combined font name. This is done to handle both an Asian font
and a Western font as though they are in one font family. In a combined font, the Asian font is the base font, and the
Roman font is the Western font. For example, you can create a combined font named Mincho-Palatino that uses
Mincho for Asian characters and switches to Palatino for Roman characters.

When reading a MIF paragraph that uses Mincho-Palatino, FrameMaker displays Asian characters in Mincho and
Roman characters in Palatino. If the Mincho font is not installed on the user’s system, FrameMaker displays the Asian
text in a font that uses the same character encoding as Mincho.

CombinedFontCatalog statement

Combined fonts are defined for the document in the Cormbi nedFont Cat al og statement. For each combined font,
there is a Combi nedFont Def n statement that specifies the combined font name and identifies the Asian and the
Roman component fonts. Note that the combined font catalog must precede the first Pgf Font and Font statements
in the document.

Syntax
<CombinedFontCatalog
<Conbi nedFont Def n Defines a single combined font
<Conbi nedFont Name string> The name of the combined font
<Conbi nedFont BaseFamni | y string> The name of the Asian component font

199

Online manual

ADOBE FRAMEMAKER 7.0 | 200
MIF Asian Text Processing Statements

<Conbi nedFont West ernFami |y string>

The name of the Roman component font

<Conbi nedFont West er nSi ze percent >

The size of the Roman component font,
expressed as a percentage of the base font
size; allowed values are 1.0% through
1000.0%

<Conbi nedFont st er nShi ft percent>

The baseline offset of the Roman font,
expressed as a percentage of the base font
size where a positive value raises the
Roman baseline above the Asian baseline;
allowed values are -1000.0% through
1000.0%

<Conhi nedFont BaseEncodi ng keywor d>

Specifies the encoding for the base font.

keywor d can be one of:
JI SX0208. shiftJI' S
Bl G5

GB2312- 80. EUC
KSC5601- 1992

<Conbi nedFont Al | owBaseFami | yBol dedAndOol i qued
bool ean>

Yes allows a simulation of the bold or
italic Asian component font to be used if
Bold or Italic/Oblique is applied to the
combined font.

End of the Conbi nedFont Def n state-
ment

More Conbi nedFont Def n statements
as needed

End of the Corbi nedFont Cat al og
statement

Example
The following is an example of a combined font catalog:

<CombinedFontCatalog

<CombinedFontDefn
<CombinedFontName "MyCombinedFont'>
<CombinedFontBaseFamily *Osaka'>
<CombinedFontWesternFamily ‘Times'>
<CombinedFontWesternSize 75.0%>
<CombinedFontWesternShift 0.0%>
<CombinedFontBaseEncoding "JISX0208.ShiftJIS'>
<CombinedFontAllowBaseFamilyBoldedAndObliqued Yes>
> # end of CombinedFontDefn

> # end of CombinedFontCatalog

PgfFont or Font statement

When a combined font is used in a paragraph or text line, the Pgf Font or Font statement includes the combined

font name and the base font’s family name. These statements also include the PostScriptName and PlatformName

for both the base and the Roman fonts.

FCombi nedFont Name is a new statement to express the combined font name. The FFani | y statement expresses the

base font’s family name.

Online manual

ADOBE FRAMEMAKER 7.0
MIF Asian Text Processing Statements

The FPost Scri pt Name and FPI at f or nNane statements all refer to the base font. The following new statements have
been added to express the corresponding values for the Roman font:

* FWest er nPost Scri pt Nane
* FWest er nPl at f or mNane

Syntax

<PgfFont

<FPost Scri pt Nane string>

The PostScript name for the base font

<FPl at f or mMNan®e string>

The platform name for the base font

<FWest er nPost Scri pt Nane string>

The PostScript name for the Roman font

<FWest er nPl at f or nNane string>

The platform name for the Roman font

<FConbi nedFont Nane string>

The name of the combined font, as defined in the combined font
catalog

<FEncodi ng string>

Specifies the encoding for the base font. This is to specify the
encoding for a double-byte font.If not present, the default is
Roman.

keywor d can be one of:
JI SX0208. shi ftJI'S
Bl G5

GB2312-80. EUC
KSC5601- 1992

End of the PgfFont statement

Example
The following is an example of a combined font in a Par a statement:

<Para
<Unique 996885>
<PgfTag ‘Body'>

<ParaLine
<Font
<FTag *'>

<FPlatformName ‘M.Osaka.P'>
<FWesternPlatformName "M.Times.P'>
<FFamily "Osaka'>
<FCombinedFontName "MyCombinedFont'>
<FEncoding “JISX0208.ShiftJIS'>
<FLocked No>

> # end of Font

<String “CombinedFontStatement '>
<Font

<FTag ">

<FPlatformName ‘M.Osaka.P'>

Online manual

ADOBE FRAMEMAKER 7.0 1202
MIF Asian Text Processing Statements

<FWesternPlatformName ‘M.Times.P'>
<FFamily "Osaka'>

<FCombinedFontName "MyCombinedFont'>
<FWeight "Medium'>

<FEncoding ‘JISX0208.ShiftJIS'>
<FLanguage Japanese>

<FLocked No>

> # end of Font

<String ° sHAR >

> # end of ParaLine
> # end of Para
Kumihan Tables

Kumihan tables specify line composition rules for Japanese documents. FrameMaker uses standard JIS 4051
Kumihan rules by default. In most cases, the JIS standard is fine, but there are cases where corporate standards might
differ from the JIS rules.

Kumihan tables are associated with a document. To customize the Kumihan tables for a document, you specify the
tables in MIE. Then you can import the MIF into an existing document, or into a template you will use to create new
documents.

Understanding Kumihan tables

Kumihan tables specify line composition rules by assigning characters to various classes, and then specifying four
tables of rules that apply to the characters of each class.

The Char O ass statement assigns each character to one of 25 classes. For example, the BegPar ent heses cl ass
and the EndPar ent heses class are defined by the following MIF statements, and they contain the characters shown
in the statement.

<BegParentheses * *{[[{{{MP["'>
<EndParentheses *"™*11kral' >
For more information on the Char O ass statement, see “CharClass statement” on page 205.

The four statements that define the tables of rules that apply to the characters of each class are SqueezeTabl e,
SpreadTabl e, Li neBr eakTabl e, and Ext r aSpaceTabl e. Each of these statements specify the actions FrameMaker
takes for the characters in each of the 25 classes.

For example, the Li neBr eakTabl e statement specifies whether a line break can occur between a character of one
class and a character of another class. Here is an example of a Li neBr eakTabl e statement that specifies when a line
break can occur between a character in the BegPar ent heses class and a character in each of the 25 classes:

<BegParentheses 1111111111111111111311111>

Online manual

ADOBE FRAMEMAKER 7.0
MIF Asian Text Processing Statements

The 25 numerical values for the BegPar ent heses statement specify the actions FrameMaker takes when a
character from each of the 25 classes, such as an ending parenthesis character, follows a character in the BegPar en-
theses class. The position of each numerical value after the BegPar ent heses statement specifies the class. For
example, the first position is the BegPar ent heses class, the EndPar ent heses class is the second position, and so
on. If a numerical value of 0 is specified, FrameMaker allows a line break between a character the BegPar ent heses
class and a character in the class specified in that position in the statement. If a value of 1 is specified, FrameMaker
does not allow a line break.

— =
-

o] :,_"E [aVga) "53

< < o o s B = =

wq"’_)-—: - U"DE v &~ = O

5 O w o s 9 o o < =

® L8 = = = =

uw.Es:s:E_D%w = = Mohgm

< Z o3 2 E® D Wy =z = o 3 3 g 2

= 2 o B A = oo g 9 o 8 -

= g o9 08 X5 s« = = I R

03%00()@-—"0&:‘ S S 5 B »n O 0o g
&-m:._H—Uurgmmww—:—:‘ﬂ%GEmm-—«wam
ST A E B Y Ssw o o gwB500 Yyn 8 8 g8 0w w0 0
o 0 0 22 g 0 9 s 2o 0 g g g 0 0 = b o= =oH
on O =R O O = = S »u » = - 2 8 8 ©8 < «©
o g 0 2 0w g O 4 3 b= ¥ e 8 2 8 0 0 & s A A Ao
mmZ0O0OAmZ A~ n < OmMmMmZDMAEAMLPRMELDLD LN OO
<BegParentheses 111111111 11111111113 111T1:1

The column position of each numerical value in the statement specifies the action
to take for each class.

In the preceding example, a line break does not occur between a character in the BegPar ent heses class and a
character in the EndPar ent heses class because the value 1 is in the second position, which is the column position
for the EndParentheses class of characters. For more information on the Li neBr eakTabl e statement, see
“LineBreakTable statement” on page 209.

Writing Kumihan tables as MIF

FrameMaker only writes out Kumihan tables in MIF when you are running FrameMaker on Asian system software.
If you are running on an Asian system, when you save a document as MIF, the Kumihan tables are written out as part
of the document.

This is most critical with the character classes. To specify a character class in MIE, you must be able to type the
character and save it in a text file. The standard Western system doesn’t include these character sets in its character
code page, so these characters would appear garbled. You need the Asian system to represent the characters in a text
file.

To see an example of a Kumihan table, it is best to save a document as MIF, open the MIF on an Asian system in a
text editor, and search for the Kum hanCat al og statement.

Specifying Kumihan tables in MIF

The following statements specify the Kumihan catalog and all of its component tables.

KumihanCatalog statement

The Kumi hanCat al og statement begins the Kumihan table specification for the document. Note that the Kumihan
catalog is not included in the <Docunent > block, but is in a block of its own.

Each Asian language can have its own Kumihan tables. This means that one Kumihan catalog can have up to four
sets of tables, one set for each of the four supported Asian languages (Japanese, Traditional Chinese, SimpleChinese,
and Korean).

203

Online manual

ADOBE FRAMEMAKER 7.0 | 204
MIF Asian Text Processing Statements

Syntax
<KumihanCatalog
<Kum han Defines a Kumihan table set
<Kuni han Additional Kumihan table sets as needed (one for each Asian lan-
guage - up to four per document)
> End of Kumi hanCat al og statement

Kumihan statement

The Kumi han statement defines a set of Kumihan tables. A document can have one set of tables for each of the four

supported Asian languages.

Syntax

<Kumihan

Defines a Kumihan table

<Kl anguage keyword>

The language for this table

keywor d can be one of:
Japanese

Tradi ti onal Chi nese
Si npl eChi nese

Kor ean

<Char d ass

Defines character class assignments

<SqueezeTabl e

Defines the squeeze table

<Spr eadTabl e

Defines the spread table

Online manual

ADOBE FRAMEMAKER 7.0 | 205
MIF Asian Text Processing Statements

<Li neBr eakTabl e

Defines the line break table

<Ext r aSpaceTabl e

Defines the extra space table

Ends the Kum han statement

CharClass statement

The Char O ass statement assigns individual characters to one of 25 classes. The JIS standard recognizes 20 classes,
and MIF includes an additional five classes (Spar el through Spar e5) so you can assign characters custom character

classes.
MIF Statement Column Description
Position
<CharClass

<BegPar ent heses chars> 1 The characters to use as opening parentheses

<EndPar ent heses chars> 2 The characters to use as ending parentheses

<NoLi neBegi nChar chars> 3 Characters that cannot start a new line of text

<Questi onBang chars> 4 Characters for questions and exclamations

<Cent er edPunct chars> 5 Punctuation characters that must be centered between characters

<Peri odComma char s> 6 Punctuation that is not centered

<NonSepar abl eChar chars> 7 Characters that cannot have line breaks between them

<Pr ecedi ngSynbol chars> 8 Characters such as currency symbols (¥ or $)

<Succeedi ngSynbol chars> 9 Characters such as % or ° (degree)

<Asi anSpace chars> 10 Characters for spaces in Asian text

<Hi ragana chars> 1 The set of hiragana characters

<Ot her s> 12 All characters not assigned to any class automatically belong to
<Qt her s>

<BaseChar Wt hSuper chars> 13 FrameMaker uses this class to allow spreading between the end of
a footnote and the next character. Do not assign any characters to
this class.

<BaseChar Wt hRubi chars> 14 The rubi block, including oyamoji and rubi text. This class has to do
with Rubikake and Nibukake rules that specify how to handle spac-
ing between a rubi block and an adjacent character.

<Nuneral chars> 15 Characters for numerals

<Uni t Synbol chars> 16 This class is not used by FrameMaker

<RomanSpace chars> 17 Characters for spaces in Roman text

<RomanChar chars> 18 Characters for Roman text

<Par enBegi nWari Chu chars> 19 The current version of FrameMaker does not support Warichu; this

class is not used by FrameMaker

Online manual

ADOBE FRAMEMAKER 7.0
MIF Asian Text Processing Statements

MIF Statement Column Description
Position
<Par enEndWar i Chu chars> 20 The current version of FrameMaker does not support Warichu; this
class is not used by FrameMaker
<Spar el chars> 21 Reserved for a user-defined character class
<Spar e2 chars> 22 Reserved for a user-defined character class
<Spar e3 chars> 23 Reserved for a user-defined character class
<Spar e4 chars> 24 Reserved for a user-defined character class
<Spare5 chars> 25 Reserved for a user-defined character class
> End of the Char Cl ass statement
Usage

Assigning characters to a class identifies them in the succeeding tables so the various typographical rules can be
specified for each class of character.

Any character that is not assigned to a class is automatically assigned to the <Ot her s> class. When specifying classes,
you should not assign any characters to <Ot her s>. In fact, it is not necessary to include a MIF statement for
<O her s>. In the following tables, the 12th column position corresponds to the <Ct her s> class.

If you are using Asian system software, you can enter the characters for each class directly in a text file.

Example
The following is an example of a portion of a Char O ass statement:

<CharClass

<BegParentheses " “{[[{4#MF['>

<EndParentheses ** 111] ">

<NolLineBeginChar *» ¥ * ¥¥ =g 3ida¥w +th7i2zduvr1aTtnr>

> # end of CharClass

SqueezeTable statement

The SqueezeTabl e statement defines how to compress the space surrounding characters of each class. Note that
each character is rendered within a specific area. For Asian characters, this area is the same for each character. These
rules determine how to compress this area for optimum line rendering.

Syntax
<SqueezeTable
<SqueezeHori zontal nuneral s> Defines how to squeeze horizontal text
<SqueezeVertical nuneral s> Defines how to squeeze vertical text
> End of SqueezeTabl e statement

206

Online manual

ADOBE FRAMEMAKER 7.0 | 207
MIF Asian Text Processing Statements

The possible values for nuner al s are:

- No squeeze

- Half squeeze from top or left

- Half squeeze from bottom or right

Quarter squeeze from all sides

- Same as 3, but do not apply vertical squeeze to a semicolon
- This character pair should not have occurred

upbhwWN—=O
'

Usage

The SqueezeHor i zont al and SqueezeVerti cal statements include 25 numerical values, one for each character
class. The values are separated by a space. An example of a squeeze table statement is:

<SqueezeTable . -
— — = =
— — [Vl 3
« _go_g 5 3 Q =
» » O - U o g n X = O
20 w0 ® 9 < < O
w 2 E = = = =
u”ﬁﬁﬁﬁz>m A== _wkgw
'ﬂ'g';owsgmmbb‘u 33 Oumﬁg
- = 2 R="} = op = © < o=
=S 2w O & E s w = = 2 o= Hho
s 9B S0 &ETas = =% EN0 0=
= R e N R R R R s I = B - TS I N R N T
< E£2 923 »p 0 o0g WHOOU A & 8 g 2 00O O O
Q"m._lgu-—';:uﬁ)mﬂi”uwauaaowuua3.1u
fgozs‘“o”;'ahfggﬂlaoogsaaa&&
L $— el
MR Z00A ZA adTO0OMmMRZDHENMEARDAD B N
<SqueezeHorizontal 1120032000000O0S500O012000°UO0°TO0
<SqueezeVertical 12004200000005000120000O0TO0T0

> # end of SqueezeTable

In the preceding example, the SqueezeHor i zont al value for a character in the NoLi neBegi nChar class is 2, which
specifies half squeeze from the right.

SpreadTable statement

The Spr eadTabl e statement defines how to reduce the squeeze that was applied to adjacent characters. There are 25
statement rows in this table, each corresponding to the 25 character classes, respectively.

There are 26 numeric values in each statement row. The first 25 values correspond to the 25 character classes, respec-
tively. The 26th value corresponds to the beginning or end of a line. These values specify how to spread a character
of the class identified by the row statement, when followed by a character in the class identified by the column
position in the statement.

Syntax

<SpreadTable

<BegPar ent heses nureral s>

<EndPar ent heses nuneral s>

<NoLi neBegi nChar nuneral s>

<Questi onBang nuneral s>

<Cent er edPunct nuneral s>

<Peri odConmma numer al s>

<NonSepar abl eChar nuneral s>

Online manual

ADOBE FRAMEMAKER 7.0 | 208
MIF Asian Text Processing Statements

<Pr ecedi ngSynbol nuneral s>

<Succeedi ngSynbol nuneral s>

<Asi anSpace numeral s>

<Hi ragana nuneral s>

<t her s>

<BaseChar Wt hSuper nuneral s>

<BaseChar Wt hRubi nuneral s>

<Nurrer al nuneral s>

<Uni t Symbol nurrer al s>

<RomanSpace nureral s>

<RomanChar nuneral s>

<Par enBegi nWar i Chu nuneral s>

<Par enEndWari Chu nuneral s>

<Spar el nuneral s>

<Spar e2 nuneral s>

<Spar e3 nuneral s>

<Spar e4 nuneral s>

<Spar e5 nuneral s>

>

End of Spr eadTabl e statement

The possible values for numer al s are:

QLVWONOAUTA WN —=O

12

14
15

No spread

Spread the first character of the pair by 1/2 em

Spread the second character of the pair by 1/2 em

Spread the first character of the pair by 1/4 em

Spread the second character of the pair by 1/4 em

Spread both characters of the pair by 1/4 em

Spread the first character by 1/2 em and the second character by 1/4 em

Add spread to the first character of an Asian/Roman character pair

Add spread to the second character of a Roman/Asian character pair

Delete the first occurance of the two spaces; for example, delete the first of two adjacent Roman space characters
Nibukake - Rubi may extend over the preceding nibukake, but it cannot exceed the nibukake; add space to the first
oyamoji character

Nibukake - Rubi may extend over the following nibukake, but it cannot exceed the nibukake; add space to the last
oyamoji character

Allow rubi text to extend over oyamoji character when betagumi; no space is added

Place oyamoji character with rubi based on the standard rule

Double yakumono - Double yakumono rule is applied

This character pair should not have occurred

Online manual

ADOBE FRAMEMAKER 7.0 | 209
MIF Asian Text Processing Statements

Usage

Each statement row in the spread table includes 26 numerical values, one for each character class, and an added value
for the characters at the beginning or the end of a line. The values are separated by a space. An example of a spread
table is:

<SpreadTable . o

— —_ = < 5

5 23 2 53 O =

w 9 O - O o g wn & = O

33Ucou<vmg>\ < o s oz

s v 8 8 8 E 2 £ &4 Refih= ﬁohgw

= < MNSE“’(I)OOQ) 33 ouwﬁg

‘—“"QCQCM S o 9 —Dw-ﬂ‘—'

o & 29 O = R [B B =% on O

o ¥ 8 S 00 A& ER ag S 8 T Ew O o =8
gm:.ﬂn.—gm—uum«:mﬂr‘: = > 8 8 M M o~ NN N
m_ﬁ:oowwugoo*«UU V8 8 0 8 v U O U W
A~ 280 22 2 0V s ¥0 v EE g g 0 5 H o= ==
¥E o385 58352528 % 525555 AR

3 — w2

mm Z 00K Z A o <IZIO0OR B ZPHEEAPR OHDLHLDNHDND
<BegParentheses 10 00 400O0O0OO0O0O00O0OCT1 00OOOTOO0OOOO0TI1
4 2 5 5
<EndParentheses 1 114111101111 111111 11T1T1O01
4 4 0 5

> # end of SpreadTable

In the preceding example, no spread occurs between a character in the BegPar ent heses class and a character in
the Quest i onBang class because the value 0 (No spread) is in the fourth position, which is the column position for
the Quest i onBang class of characters.

LineBreakTable statement

The Li neBr eakTabl e statement defines how to break lines between characters. There are 25 statement rows in this
table, each corresponding to the 25 character classes, respectively.

There are 25 numeric values in each statement row. Each value corresponds to one of the 25 character classes, respec-
tively. These values specify how to break a line after a character of the class identified by the row statement, when
followed by a character of the class identified by the column position.

Syntax

<LineBreakTable

<BegPar ent heses nureral s>

<EndPar ent heses nuneral s>

<NoLi neBegi nChar nuneral s>

<Questi onBang nuneral s>

<Cent er edPunct nuneral s>

<Peri odComma numer al s>

<NonSepar abl eChar nuneral s>

<Pr ecedi ngSynbol nuneral s>

<Succeedi ngSynbol nuneral s>

<Asi anSpace numeral s>

Online manual

ADOBE FRAMEMAKER 7.0 |1 210
MIF Asian Text Processing Statements

<Hi ragana nuneral s>

< her s>

<BaseChar Wt hSuper nuneral s>

<BaseChar Wt hRubi nuneral s>

<Nurer al nuneral s>

<Uni t Synbol nureral s>

<RomanSpace numeral s>

<RomanChar nureral s>

<Par enBegi nWari Chu nuneral s>

<Par enEndWar i Chu nuneral s>

<Spar el nuneral s>

<Spare2 nurmeral s>

<Spar e3 nuneral s>

<Spar e4 nuneral s>

<Spar e5 nuneral s>

>

End of Li neBr eakTabl e statement

The possible values for numer al s are:

0 - Line break is allowed

1 - Line break is not allowed

2 - Break the line according to Roman text rules
3 - This character pair should not have occurred

Usage

Each statement row in the line break table includes 25 numerical values, one for each character class. The values are
separated by a space. An example of a line break table is:

<LineBreakTable
w
)
w
L5
=
=]
)
=
<
[=9}
o0
L
m

<BegParentheses 1

<EndParentheses 0

> # end of LineBreakTable

EndParentheses

—_ =

NoLineBeginChar
QuestionBang

—_ =

—_ =

CenteredPunct

—_ =

PeriodComma

—_ =

-

- —_ v =
S — O a, L2
= o o =R
2 EE 2z
.2&5; [
3 R
< o b W 33
== s« [
a £ "5 a=g = =
0T O Vs ©®
»n o o g o =0 0O
g 0 9 g s Z o o

O O &~ = S v »
°c L 325 8 @
Z A~ »m < IT Om m

,_.
-
—
—
—
—
—
—

00 0 00 O0O0 O

Numeral

—

0

UnitSymbol

S =

RomanSpace

IS

RomanChar

(=T

ParenBeginWariChu

(=T

v ParenEndWariChu

—

o o Sparel

o o Spare2
o o Spare3
o o Spare4
o o Spare5

Online manual

ADOBE FRAMEMAKER 7.0 | 211
MIF Asian Text Processing Statements

In the preceding example, a line break can occur between a character in the EndPar ent heses class and a character
in the NonSepar abl eChar class because the value 0 (Line break is allowed) is in the seventh position, which is the
column position for the NonSepar abl eChar class of characters.

ExtraSpaceTable statement

The Ext r aSpaceTabl e statement defines how to add extra space between characters when needed for full justifi-
cation. There are 25 statement rows in this table, each corresponding to the 25 character classes, respectively.

There are 25 numeric values in each statement row. Each value corresponds to one of the 25 character classes, respec-
tively. These values specify how to add space after a character of the class identified by the row statement, when
followed by a character of the class identified by the column position.

Syntax

<ExtraSpaceTable

<BegPar ent heses nuneral s>

<EndPar ent heses nuneral s>

<NoLi neBegi nChar nuneral s>

<Questi onBang nuneral s>

<Cent er edPunct nuneral s>

<Peri odComma numeral s>

<NonSepar abl eChar nuneral s>

<Pr ecedi ngSynbol nuneral s>

<Succeedi ngSynbol nuneral s>

<Asi anSpace nureral s>

<Hi ragana nuneral s>

<C her s>

<BaseChar Wt hSuper nuneral s>

<BaseChar Wt hRubi nureral s>

<Nurrer al nuneral s>

<Uni t Synbol nureral s>

<RomanSpace nuneral s>

<RomanChar nuneral s>

<Par enBegi nWari Chu nuneral s>

<Par enEndWar i Chu nuner al s>

<Spar el nuneral s>

<Spar e2 nuneral s>

Online manual

ADOBE FRAMEMAKER 7.0 |212
MIF Asian Text Processing Statements

<Spar e3 nuneral s>

<Spar e4 nuneral s>

<Spar e5 nuneral s>

> End of Ext r aSpaceTabl e statement

The possible values for nuner al s are:

- Extra space is allowed

- Extra space is not allowed

- Add extra space to the last character of a Roman word

Add extra space after a Roman character

- Add extra space if the adjacent characters are one each of Japanese and Roman characters

- Delete one of two space characters. Note that FrameMaker does not use this action because the Smart Spaces feature
performs it automatically

This character pair should not have occurred

uhbhwWN-—=O0O
'

[e)}
'

Usage

Each statement row in the extra space table includes 25 numerical values, one for each character class. The values are
separated by a space. An example of a extra space table is:

<ExtraSpaceTable

NoLineBeginChar
QuestionBang
NonSeparableChar
PrecedingSymbol
SucceedingSymbol
BaseCharWithSuper
BaseCharWithRubi
ParenBeginWariChu
o ParenEndWariChu

BegParentheses
EndParentheses
CenteredPunct
PeriodComma
AsianSpace
Hiragana

Others
UnitSymbol

RomanChar

Numeral
Sparel
Spare2
Spare3
Spare4
Spare5

—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—

<BegParentheses

<EndParentheses

o o RomanSpace

—
—
—
—
—
—
—
—
-
—
—
—
—
—
—
—
—
—
—
—
—_

> # end of ExtraSpaceTable

In the preceding example, a extra space is not allowed between a character in the EndPar ent heses class and a
character in the Cent er edPunct class because the value 1 (Extra space is not allowed) is in the fifth position, which
is the column position for the Cent er edPunct class of characters.

Rubi text

Rubi text is a Japanese system for representing the pronunciation of words as a string of phonetic characters
(hiragana) directly above the word in question (oyamoji). A MIF file includes document-level statements that
describe the settings made in the Rubi Properties dialog box, as well as MIF statements for a rubi composite.

A rubi composite includes both oyamoji text and rubi text. If the document is structured, the rubi composite
contains an object tagged RubiGroup, the oyamoji text, an element tagged Rubi, and the rubi text.

Document statement

In addition to document preferences (see “Document statement” on page 82), the MIF Docunent statement
describes standard formats for rubi text. The rubi formatting substatements correspond to settings in the Rubi
Properties dialog box.

Online manual

Syntax

ADOBE FRAMEMAKER 7.0 |213
MIF Asian Text Processing Statements

<Document

See page 82

<DRubi Si ze percent age>
OoR

The size of the rubi characters, proportional to the size of the
oyamoji characters

Allowed values are 1.0% through 1000.0%

<DRubi Fi xedSi ze point size

The fixed size of the rubi characters in points only.

Either the DRubiSize statement or the DRubiFixedSize state-
ment can be specified, but not both in the same document.

<DRubi Over hang bool ean>

Yes allows rubi to overhang hiragana oyamoji text

<DRubi Al i gnAt Bounds bool ean>

Yes aligns all rubi and oyamoji characters at line boundaries

<DW deRubi SpaceFor Japanese keywor d>

Determines how to space rubi characters for Japanese
oyamoji that is wider than the rubi text

keywor d can be:
W de

Nar r ow
Proporti onal

<DNar r owRubi SpaceFor Japanese keyword>

Determines how to space rubi characters for Japanese
oyamoji that is narrower than the rubi text

keywor d can be:
W de

Nar r ow
Proporti onal

<DW deRubi SpaceFor Ot her keywor d>

Determines how to space rubi characters for non-Japanese
oyamoji that is wider than the rubi text

keywor d can be:
W de

Nar r ow
Proporti onal

<DNar r owRubi SpaceFor & her keywor d>

Determines how to space rubi characters for non-Japanese
oyamoji that is narrower than the rubi text

keywor d can be:
W de

Nar r ow
Proporti onal

End of the Docunent statement

Example

<Document

<DRubiSize 50%>

<DRubiOverhang Yes>
<DRubiAlignAtBounds Yes>
<DWideSpaceForJapanese Proportional>
<DNarrowSpaceForJapanese Proportional>
<DWideSpaceForOther Narrow>
<DNarrowSpaceForOther Narrow>

Online manual

ADOBE FRAMEMAKER 7.0 | 214
MIF Asian Text Processing Statements

> # end of Document

RubiCompositeBegin statement

The Rubi Conposi t eBegi n statement is always matched with a Rubi Conposi t eEnd statement. Between them are
the contents of the rubi composite; the oyamoji and the rubi text. A rubi composite can occur anywhere in a

Par al i ne statement. Also, anything that can occur within a Par al i ne, except another rubi composite, can also
occur between the Rubi Conposi t eBegi n and Rubi Conposi t eEnd statements.

In a structured document, the rubi composite includes a RubiGroup element and a Rubi element.

Syntax
<RubiCompositeBegin> Starts the rubi composite
<El enment For structured documents only - Defines the RubiGroup element
Continue the RubiGroup element specification
> End of the RubiGroup element
<String string> The oyamoji text
<Rubi Text Begi n> Begins the rubi text
<El enent For structured documents only - Defines the Rubi element
Continue the Rubi element specification
> End of the Rubi element
<String string> The rubi text
<Rubi Text End> Ends the rubi text
<RubiCompositeEnd> Ends the rubi composite

Example - unstructured

<Paraline

<String * kumihan '>

<RubiCompositeBegin
<String " §HKE ">
<RubiTextBegin
<String ‘EHPILE'>
<RubiTextEnd >
<RubiCompositeEnd >

> # end of ParaLine

Example - structured

<Paraline

<String ‘Some text ’>
<RubiCompositeBegin

<Element
<Unique 123456>

Online manual

ADOBE FRAMEMAKER 7.0 | 215
MIF Asian Text Processing Statements

<ETag ‘RubiGroup’>
<Attributes
.#. . Typical MIF to define attributes
># end of Attributes
<Collapsed No>
<SpecialCase No>
<AttributeDisplay AllAttributes>
> # end of Element
> # end of RubiCompositeBegin
<String ‘Oyamoji text’>
<RubiTextBegin
<Element
<Unique 123457>
<ETag ‘Rubi’>
<Attributes
.#. . Typical MIF to define attributes
># end of Attributes
<Collapsed No>
<SpecialCase No>
<AttributeDisplay AllAttributes>
> # end of Element
<String ‘Rubi text’>
<RubiTextEnd>
<RubiCompositeEnd>

<String ‘Some more text >

end of Paraline

Online manual

216

Examples

The examples in this appendix show how to describe text and graphics in MIF files. (The current examples are valid
only for unstructured documents.) You can import the MIF file into an existing FrameMaker template, or you can
open the MIF file as a FrameMaker document. In either case, if you save the resulting document in MIF format, you
will create a complete description of the document—not just the text or graphics.

If you find any MIF statement difficult to understand, the best way to learn more is to create a sample file that uses
the statement. Use FrameMaker to edit and format a document that uses the MIF feature and then save the document
as a MIF file. Examine the MIF file with any standard text editor.

The examples in this appendix are provided online.

For FrameMaker on this platform Look here
UNIX $FMHOME/ f mi ni t/ | anguage/ Sanpl es,where | anguage is the lan-
guage in use,such asusengl i sh
Macintosh The Sanpl es folder where MIF Reference is installed
Windows The sanpl es directory where MIF Reference is installed
Text example

This example shows a simple text file and the MIF file that describes it. If you are writing a filter program to convert
text files to MIF, your program should create a similar MIF file. The following text file was created with a text editor:

MIF (Maker Interchange Format) is a group of statements that describe all text and graphics under-
stood by FrameMaker in an easily parsed, readable text file. MIF provides a way to exchange infor-
mation between FrameMaker and other applications while preserving graphics, document structure,
and format.

You can write programs that convert graphics or documents into a MIF file and then import the MIF

file into a FrameMaker document with the graphics and document formats intact.

A filter program translated the text file to produce the following MIF file:

<MIFFile 7.00># Identifies this as a MIF file.
The macros below are used only for the second paragraph of
text, to illustrate how they can ease the process of
MIF generation.
define(pr,* <Para ')
define(ep,*>")
define(In,<ParaLine <String')
define(en,”>>")
First paragraph of text.
<Para
#
<PgfTag> statement forces a lookup in the document’s

Paragraph Catalog, so you don’t have to specify the format

Online manual

in detail here.
<PgfTag ‘Body ' >
#
One <ParaLine> statement for each line in the paragraph.
Line breaks don’t matter; the MIF interpreter adjusts line
breaks when the file is opened or imported.
<ParaLine
<String "MIF (Maker Interchange format) is a group of '>
>
<ParaLine
<String * statements that describe all text and graphics '>
>
<ParaLine
<String ‘understood by FrameMaker in an easily parsed, '>
>
<ParaLine
<String "readable text file. MIF provides a way to exchange '>
>
<ParaLine

<String ‘information between FrameMaker and other ' >
>
<ParaLine
<String ‘applications while preserving graphics, document '>
>
<Paraline

<String ‘structure, and format. ' >

>

> # end of Para
#
Second paragraph of text.Macros defined earlier are used
here.
This paragraph inherits the format of the previous one,
since there’s no PgfTag or Pgf statement to override it.

pr

In *You can write programs that convert graphics or documents' en
In “into a MIF file and then import the MIF file into a FrameMaker' en
In “"document with the graphics and document formats intact.' en
ep
End of MIF File

Bar chart example

ADOBE FRAMEMAKER 7.0 |217
Examples

This example shows a bar chart and the MIF file that describes it. This example is in the file bar chart . ni f.

Online manual

ADOBE FRAMEMAKER 7.0 |1 218
Examples

To draw the bar chart, you open or import the MIF file in FrameMaker. Normally, you would create an anchored
frame in a document, select the frame, and then import this file. The MIF statements to describe the bar chart can
be created by a database publishing application that uses the values in a database to determine the size of the bars.

Market Shares
100% I Brand F
I Brand I
75%—
50%
25%—

1986 1987 1988 1989

<MIFFile 7.00># Generated by SomeChartPack 1.4; identifies this
as a MIF file.
Chart title, in a text line.
All objects in the chart are grouped, so they have the same
Group ID.
<TextLine <GroupID 1>
<Font <FFamily ‘Times'> <FSize 14> <FPlain Yes> <FBold Yes>
<FDX 0> <FDY 0> <FDAX 0> <FNoAdvance No>
>
<TLOrigin 1.85" 0.21"> <TLAlignment Center> <String ‘Market Shares'>
> # end of TextLine
Boxes for Brand F and Brand I legends.
<Rectangle <GroupID 1>
<Fill 1>
<ShapeRect 1.36" 0.33" 0.38" 0.13">
>
<Rectangle <GroupID 1>
<Fill 4>
<ShapeRect 1.36" 0.54" 0.38" 0.13">
>
Text lines for Brand F and Brand I legends.
<TextLine <GrouplD 1>
<Font <FSize 12> <FPlain Yes>>
<TLOrigin 1.80" 0.46"> <TLAlignment Left> <String ‘Brand F'>
>
Second text line inherits the current font from the
preceding text line.
<TextLine <GrouplD 1>
<TLOrigin 1.80" 0.67"> <TLAlignment Left> <String ‘Brand I'>

Online manual

>
Reset the current pen pattern and pen width for subsequent
objects.

<Pen 0>

<PenWidth 0.500>
Axes for the chart.
<PolyLine <GroupID 1> <Fill 15>

<NumPoints 3> <Point 0.60" 0.08"> <Point 0.60" 2.35"> <Point 3.10" 2.35">

>
Tick marks along the y axis.
<PolyLine <GrouplD 1>
<NumPoints 2> <Point 0.60" 1.83"> <Point 0.47" 1.83">
>
<PolyLine <GroupID 1>
<NumPoints 2> <Point 0.60" 1.33"> <Point 0.47" 1.33">
>
<PolyLine <GroupID 1>
<NumPoints 2> <Point 0.60" 0.83"> <Point 0.47" 0.83">
>
<PolyLine <GroupID 1>
<NumPoints 2> <Point 0.60" 0.33"> <Point 0.47" 0.33">
>
X-axis labels.
<TextLine <GroupID 1>
<TLOrigin 1.08" 2.51"> <TLAlignment Center> <String "
>
<TextLine <GroupID 1>
<TLOrigin 1.58" 2.51"> <TLAlignment Center> <String "
>
<TextLine <GroupID 1>
<TLOrigin 2.08" 2.51"> <TLAlignment Center> <String "
>
<TextLine <GroupID 1>
<TLOrigin 2.58" 2.51"> <TLAlignment Center> <String *
>
Y-axis labels.
<TextLine <GrouplD 1>

1986

1987

1988

1989

>

'

<TLOrigin 0.46" 1.92"> <TLAlignment Right> <String " 25% '>

>
<TextLine <GroupID 1>

<TLOrigin 0.46" 1.42"> <TLAlignment Right> <String " 50% '>

>
<TextLine <GrouplD 1>

<TLOrigin 0.46" 0.92"> <TLAlignment Right> <String " 75% '>

>
<TextLine <GroupID 1>

<TLOrigin 0.46" 0.42"> <TLAlignment Right> <String " 100% '>

>

Draw all the gray bars first, since they have the same fill.

ADOBE FRAMEMAKER 7.0 | 219
Examples

Online manual

Set the fill for the first bar; the others inherit the fill

pattern.
<Rectangle <GroupID 1>
<Fill 4>
<ShapeRect 0.97" 1.10"
>
<Rectangle <GroupID 1>
<ShapeRect 1.47" 1.47"
>
<Rectangle <GroupID 1>
<ShapeRect 1.97" 1.72"
>
<Rectangle <GroupID 1>
<ShapeRect 2.47" 1.97"
>

Now draw all the black bars, since they have the same fill.
Set the fill for the first bar; the others inherit the fill

pattern.
<Rectangle <GroupID 1>
<Fill 1>
<ShapeRect 1.10" 1.97"
>
<Rectangle <GroupID 1>
<ShapeRect 1.60" 1.72"
>
<Rectangle <GroupID 1>
<ShapeRect 2.10" 1.22"
>
<Rectangle <GroupID 1>
<ShapeRect 2.60" 0.85"
>

Define the group for all the objects to make the chart easier

to

manipulate after it's imported into a FrameMaker document.

<Group <ID 1>
>

0.13"

0.13"

0.13"

0.13"

0.13"

0.13"

0.13"

0.13"

1.25">

0.88">

0.63">

0.38">

0.38">

0.63">

1.13">

1.50">

ADOBE FRAMEMAKER 7.0 | 220
Examples

Online manual

Pie chart example

ADOBE FRAMEMAKER 7.0 | 221
Examples

When the MIF in this sample is imported into a page or graphic frame in a document, FrameMaker centers the chart

in the page or graphic frame. This example is in the file pi echart. m f.

<MIFFile 7.00># Generated by xyzgrapher 3.5; identifies this as a
MIF file.
All dimensions are in points.
<Units Upt >
Set the current pen pattern, width, and fill pattern.
<Pen 0>
<PenWidth .5>
<Fill 0>
Draw the black arc.
All arcs are part of the same circle, so they have the same
ArcRect.
All objects in the chart are grouped, so they have the same
Group ID.
<Arc <GrouplD 1>
<ArcRect 12 11 144 144 > <ArcTheta 0> <ArcDTheta 58>
>
Continue clockwise around the chart.
<Arc <Fill 5> <GroupID 1>
<ArcRect 12 11 144 144 > <ArcTheta 58> <ArcDTheta 77>
>
<Arc <Fill 2> <GroupID 1>
<ArcRect 12 11 144 144 > <ArcTheta 135> <ArcDTheta 108>
>
<Arc <Fill 4> <GroupID 1>
<ArcRect 12 11 144 144 > <ArcTheta 243> <ArcDTheta 66>
>
<Arc <Fill 6> <GroupID 1>
<ArcRect 12 11 144 144 > <ArcTheta 309> <ArcDTheta 51>

Online manual

ADOBE FRAMEMAKER 7.0 | 222
Examples

Define the group for all the objects to make the chart easier
to manipulate after it’s imported into a FrameMaker
document.

<Group <ID 1> >

Custom dashed lines

FrameMaker provides eight predefined dashed line options. You can define a custom pattern for dashed lines by
using the DashedPat t er n statement within an Cbj ect statement. This example is in the file cust dash. mi f.

<MIFFile 7.00>
This is a sparse dot-dash line.
<PolyLine
<Pen 0>
<Fill 15>
<PenWidth 4pt>
<ObColor *Black'>
<DashedPattern
<DashedStyle Dashed>
<NumSegments 4>
<DashSegment 10pt>
<DashSegment 10pt>
<DashSegment 0.5pt>
<DashSegment 10pt>
> # end of DashedPattern
<HeadCap Round>
<TailCap Round>
<NumPoints 2>
<Point 1.0" 1">
<Point 7.5" 1">
> # end of PolyLine
This is a very sparse dotted line.
<PolyLine
<DashedPattern
<DashedStyle Dashed>
<NumSegments 2>
<DashSegment 0.5pt>
<DashSegment 20pt>
> # end of DashedPattern
The polyline inherits round head caps and tail caps from
the previous PolyLine statement.
<NumPoints 2>
<Point 1.0" 2">
<Point 7.5" 2">
> # end of PolyLine
This is a wild one!
<PolyLine
<DashedPattern

Online manual

<DashedStyle Dashed>

<NumSegments
<DashSegment
<DashSegment
<DashSegment
<DashSegment
<DashSegment
<DashSegment
<DashSegment
<DashSegment
<DashSegment
<DashSegment

8>

4pt># solid
8pt>
12pt># solid
l16pt>
20pt># solid
24pt>
20pt># solid
l16pt>
12pt># solid
8pt>

> # end of DashedPattern
<HeadCap Butt>

<TailCap Butt>
<NumPoints 2>
<Point 1.0" 3">
<Point 7.5" 3">

> # end of PolyLine

This one has a missing DashSegment statement, so the first

10-point segment is repeated with a default gap of 10 points.

<PolyLine
<DashedPattern

<DashedStyle Dashed>

Missing NumSegments.

<DashSegment

Missing a second DashSegment.

This polyline inherits the butt cap and tail style

from the previous PolyLine statement.

<NumPoints 2>
<Point 1.0" 4">
<Point 7.5" 4">

10pt>

> # end PolyLine

This one is a really dense dotted line.

<PolyLine
<DashedPattern

<DashedStyle Dashed>
<DashSegment 1pt>

<DashSegment 1pt>

>

This polyline also inherits the butt cap and tail style

from the previous PolyLine statement.

<PenWidth 1pt>
<NumPoints 2>
<Point 1.0" 5">
<Point 7.5" 5">

> # end PolyLine

ADOBE FRAMEMAKER 7.0
Examples

Online manual

223

ADOBE FRAMEMAKER 7.0 | 224
Examples

When you’ve defined a custom dashed line style in one FrameMaker document, you can easily copy and paste the
custom style into another document by pressing Shift and choosing Pick Up Object Properties from the Graphics
menu. For more information, see your user’s manual.

Table examples

You can use MIF to create a table or to update a few values in an existing table.

Creating an entire table

This example shows a table and the MIF file that describes it. This table is in the sample file st ockt bl . i f . The
widths of columns is calculated using MIF statements that are only for input filters. Rather than specifying an exact
width for each column, the table uses the substatement Thl Col urmW dt hA for two of the columns to specify that the
column width is determined by the width of a particular cell.

Column widths are further affected by the Equal i zeW dt hs statement, which sets the columns to the width of the
widest column within the limits specified by the Thl Col urm substatements. As you examine this example, note how
the column width statements interact: the column widths are originally set by the applied table format from the Table
Catalog. The Thl For mat statement then specifies how this table instance’s column properties override those in the
default format. The Equal i zeW dt hs statement further overrides the format established by Thl For mat .

Table 2: StockWatch

Mining and Metal | 10/31/90 Weekly %
Close Change

Ace Aluminum $24.00 -3.50

Streck Metals $27.25 +2.75

Linbrech Alloys $63.75 -2.50

<MIFFile 7.00># Generated by StockWatcher; identifies this as a
MIF file.
<Tbls
<Tbl
<TbIID 1># This table’s ID is 1.
<TblFormat
<TblTag ‘Format A'>
Forces a lookup in the Table Catalog with the following
exceptions:
<TblColumn
<TblColumnNum 0>
Shrink-wrap the first column so it’s between 0 and 2 inches
wide.
<TblColumnWidthA 0 2">
>
<TblColumn
<TblColumnNum 1>
Make 2nd column 1 inch wide. This establishes a minimum

width for the columns.

Online manual

<TblColumnWidth 1">
>
<TblColumn
<TblColumnNum 2>
Shrink-wrap the third column to the width of its heading
cell.
See CellAffectsColumnWidthA statement below.
<TblColumnWidthA 0 2">
>
> # end of TblFormat
The table instance has three columns.
<TbINumColumns 3>
<EqualizeWidths
Make the width of the second and third columns equal to
the larger of the two. However, the columns cannot be wider
than 2 inches or narrower than 1 inch.
<TblColumnNum 1>
<TblColumnNum 2>
> # end of EqualizeColWidth
<TDblTitle
<TblTitleContent
<Para
Forces lookup in Paragraph Catalog.
<PgfTag ‘TableTitle'>
<ParaLine
<String “StockWatch'>
> # end of ParaLine
> # end of Para
> # end of TblTitleContent
> # end of TblTitle
<TblH# The heading.
<Row# The heading row.
<Cell <CellContent <Para# Cell in column 0.
<PgfTag ‘CellHeading'># Forces lookup in Paragraph Catalog.
<ParaLine <String "Mining and Metal'>>>>
> # end of Cell
<Cell <CellContent <Para# Cell in column 1
<PgfTag ‘CellHeading'># Forces lookup in Paragraph Catalog.
<ParaLine <String *10/31/90 Close'>>>>
> # end of Cell
<Cell <CellContent <Para# Cell in column 2
<PgfTag *CellHeading'># Forces lookup in Paragraph Catalog.
<ParaLine <String ‘Weekly %'> <Char HardReturn>>
<ParaLine <String ‘Change'>>>>
For shrink-wrap.
<CellAffectsColumnWidthA Yes>
> # end of Cell
> # end of Row
> # end of TblH

ADOBE FRAMEMAKER 7.0 | 225
Examples

Online manual

<TblBody# The body.
<Row# The first body row.
<Cell <CellContent <Para

<PgfTag “CellBody'># Forces lookup in Paragraph Catalog.

<ParaLine <String ‘Ace Aluminum'>>>>
> # end of Cell
<Cell <CellContent <Para

<PgfTag “CellBody'># Forces lookup in Paragraph Catalog.

<ParaLine <String '$24.00'>>>>
> # end of Cell
<Cell <CellContent <Para

<PgfTag ‘CellBody'># Forces lookup in Paragraph Catalog.

<ParaLine <String *-3.50'>>>>
> # end of Cell
> # end of Row
<Row# The second body row.
<Cell <CellContent <Para

<PgfTag “CellBody'># Forces lookup in Paragraph Catalog.

<ParaLine <String ‘Streck Metals'>>>>
> # end of Cell
<Cell <CellContent <Para

<PgfTag *CellBody'># Forces lookup in Paragraph Catalog.

<Paraline <String "$27.25'>>>>
> # end of Cell
<Cell <CellContent <Para

<PgfTag “CellBody'># Forces lookup in Paragraph Catalog.

<ParaLine <String "+2.75'>>>>
> # end of Cell
> # end of Row
<Row# The third body row
<Cell <CellContent <Para

<PgfTag “CellBody'># Forces lookup in Paragraph Catalog.

<ParaLine <String ‘Linbrech Alloys'>>>>
> # end of Cell
<Cell <CellContent <Para

<PgfTag ‘CellBody'># Forces lookup in Paragraph Catalog.

<ParaLine <String "$63.75'>>>>
> # end of Cell
<Cell <CellContent <Para

<PgfTag “CellBody'># Forces lookup in Paragraph Catalog.

<ParaLine <String *-2.50'>>>>
> # end of Cell
> # end of Row
> # end of TblBody
> # end of Tbl
> # end of Tbls
<TextFlow <Para
<PgfTag Body>
<ParaLine <ATDbIl 1>># Reference to table ID 1.>>

ADOBE FRAMEMAKER 7.0 | 226
Examples

Online manual

ADOBE FRAMEMAKER 7.0 | 227
Examples

Updating several values in a table

You can update several values in a table (or elsewhere in a document) by importing a MIF file.

To update a table, insert a table in a FrameMaker document and create user variables for the values you want to
update (see your user’s manual); then insert the variables in the table where you want them.

To change the values of the variables, create a MIF file with new variable definitions. You can create MIF variable
definitions from sources such as records in a database, values in a spreadsheet, or data gathered from measurement
equipment. For example, the following MIF file defines two variables:

<MIFFile 7.00>

<VariableFormats
<VariableFormat
<VariableName 90 Revenue'>
<VariableDef *2,342,165"'>

>

<VariableFormat
<VariableName *91 Revenue'>
<VariableDef *3,145,365'>

>>

When you import the MIF file into the document that contains the table, FrameMaker updates the variables in the

table.

Database publishing

This database publishing example shows how to use the data storage and manipulation capabilities of a database and
the formatting capabilities of FrameMaker through MIF.

In this example, inventory information for a coffee distributor is stored in a database. Database fields contain a
reference number, the type of coffee, the number of bags in inventory, the current inventory status, and the price per
bag. A sales representative creates an up-to-date report on the coffee inventory by using a customized dialog box in
the database application to select the category of information and sort order:

Publish Price List

- 5dles Rep
Name |Darrell Dexter |

Phone [(800) 555-1212 |

Discount

- Selection
Select Sort
All 0fferings | |By Coffee |

Online manual

ADOBE FRAMEMAKER 7.0 | 228
Examples

When the sales representative clicks Publish, a database procedure scans the database, retrieves the requested infor-
mation, and writes a MIF file that contains all of the information in a fully formatted document. The final document
looks like this:

GREEN COFFEE PRICE LIST

To order, conback: COFFEE SYSTEMS

Darrell Dexter GREEM COFFEE IMPORTER S
Sales Represntative SIHCE 1879

Prirmo Coffes Distributars

(B00) 555-1212

Offerings as of August 12, 1992

The data from the database is published as a FrameMaker table. The database procedure makes one pass through the
records in the database and writes the contents of each record in a row of the table. The procedure then creates a
Text FI owstatement that contains the text that appears above the table and creates an ATbl statement to refer to the
table instance.

You can set up a report generator like the previous example by following these general steps:

1 Create the template for the final report in FrameMaker. Design the master pages and body pages for the document
and create paragraph and character formats. You can include graphics (such as a company logo) on the master page.

2 Create a table format for the report. Specify the table position, column format, shading, and title format. Store the
format in the Table Catalog.

3 When the document has the appearance you want, save it as a MIF file.

4 Edit the MIF file to create a MIF template that you can include in your generated MIF file (see “Including template
files” on page 43). The MIF template used for this example is in the sample file cof f ee. ni f .

5 Use your database to create any custom dialog boxes or report-generating procedures.

6 Create a database query, or procedure, that extracts data from the database and writes it out into a MIF file. Use
a MIF i ncl ude statement to include the document template in the new document.

Online manual

ADOBE FRAMEMAKER 7.0 | 229
Examples

The database user can now open a fully formatted report.

The code for the procedure that extracts information from the database and outputs the MIF strings is shown in this
appendix. This procedure is written in the ACIUS 4th DIMENSION command language. You could use any database
query language to perform the same task.

The procedure does the following:

7 Creates a new document.

8 Sends the M FFi | e identification line.

9 Usesi ncl ude to read in the formatting information stored in the template cof f ee. i f .

10 Sends the MIF statements to create a table instance.

11 In each body cell, sends a field that includes the information extracted from the database.

12 Creates a text flow that uses the Text Rect | D from the empty body page in the cof f ee. mi f template.
13 Includes the At bl statement that places the table instance in the document text flow.

14 Closes the document.

Online manual

ADOBE FRAMEMAKER 7.0 | 230
Examples

In the following example, database commands are shown like this: SEND PACKET. Comments are preceded by a
single back quote (*). Local variables are preceded by a dollar sign ($).

‘This procedure first gets the information entered by the user and stores it in local
variables:
* $1 = Name of sales representative
$2 = Phone number
* $3 = Discount
CR:=char(13) ‘ carriage return character
DQ:=char(34) ‘ double quotation mark character
C_TIME(vDoc)
CLOSE DOCUMENT(vDoc)
vDoc:=Create document("")
vDisc:=1-(Num($37)/100)
‘Send header.
SEND PACKET(vDoc;"<MIFFile 7. 00> #Generated by 4th Dimension for Version 7.0
of FrameMaker"+CR)
‘Read in the MIF template for the report.
SEND PACKET(vDoc;"include (coffee.mif)"+CR)
‘Generate table.
SEND PACKET(vDoc;"<Tbls <Tbl <TblID 2> <TbIFormat <TbITag ‘Format A’>>"+CR)
SEND PACKET(vDoc;"<TbINumColumns 5> <TblColumnWidth .6"+DQ+">"+CR)
SEND PACKET(vDoc;"<TbIColumnWidth 3.25"+DQ+">"+CR)
SEND PACKET(vDoc;"<TblColumnWidth .5"+DQ+">"+CR)
SEND PACKET(vDoc;"<TblColumnWidth 1.7"+DQ+">"+CR)
SEND PACKET(vDoc;"<TblColumnWidth 1.0"+DQ+">"+CR)
(
(
(

¢

SEND PACKET(vDoc;"<TblTitle"+CR)
SEND PACKET(vDoc;"<TblTitleContent"+CR)
SEND PACKET(vDoc;"<Para <PgfTag ‘TableTitle’>"+CR)
SEND PACKET(vDoc;"<ParaLine <String ‘Offerings as of "+String(Current
date;5)+">>>>>"+CR)
‘Table Heading Row.
SEND PACKET(vDoc;"<TbIH <Row <RowMaxHeight 14.0"+DQ+"> "+CR)
SEND PACKET(vDoc;"<Cell <CellContent <Para <PgfTag ‘CellHeading’>"+CR)
SEND PACKET(vDoc;"<ParaLine <String ‘Ref No.’>>>>>"+CR)
SEND PACKET(vDoc;"<Cell <CellContent <Para <PgfTag ‘CellHeading’>"+CR)
SEND PACKET(vDoc;"<ParaLine <String ‘Coffee’>>>>>"+CR)
SEND PACKET(vDoc;"<Cell <CellContent <Para <PgfTag ‘CellHeading’>"+CR)
SEND PACKET(vDoc;"<ParaLine <String ‘Bags’>>>>>"+CR)
SEND PACKET(vDoc;"<Cell <CellContent <Para <PgfTag ‘CellHeading’>"+CR)
SEND PACKET(vDoc;"<ParaLine <String ‘Status’>>>>>"+CR)
SEND PACKET(vDoc;"<Cell <CellContent <Para <PgfTag ‘CellHeading’>"+CR)
‘Retail and Discount prices are conditional.
SEND PACKET(vDoc;"<ParaLine <Conditional <InCondition ‘Retail’>>"+CR)
SEND PACKET(vDoc;"<String ‘Price per Bag’>"+CR)
SEND PACKET(vDoc;"<Conditional <InCondition ‘Discount’>> <String ‘Discount
Price’>"+CR)
SEND PACKET(vDoc;"<Unconditional> >>>>>>"+CR)
‘Table Body.
FIRST RECORD([Inventory])
SEND PACKET(vDoc;"<TblBody"+CR)

Online manual

ADOBE FRAMEMAKER 7.0 | 231
Examples

For ($n;1;Records in selection([Inventory])
‘Change shading of row depending on inventory status.
If ([Inventory]Status="In stock")
vFill:="<CellFill 6> <CellColor ‘Green’>"
Else
vFill:=" <CellFill 6> <CellColor ‘Red>"
End if
‘Compute discount price.
vDiscPrice:=[Inventory]Price per Bag*vDisc
RELATE ONE([Inventory]Name)
SEND PACKET(vDoc;"<Row <RowMaxHeight 14.0"+DQ+">"+CR)
SEND PACKET(vDoc;"<Cell "+vFill+" <CellContent <Para <PgfTag ‘Number’>"+CR)
SEND PACKET(vDoc;"<ParaLine <String "' +String([Inventory]Ref
Number;"###")+"">>>>>"+CR)
SEND PACKET(vDoc;"<Cell "+vFill+" <CellContent <Para <PgfTag ‘Body’>"+CR)
SEND PACKET(vDoc;"<ParaLine <String "+[Inventory]Name+">>>"+CR)
SEND PACKET(vDoc;"<Para <PgfTag ‘CellBody’>"+CR)
SEND PACKET(vDoc;"<ParaLine <String "'+[Beans]Description+">>>>>"+CR)
SEND PACKET(vDoc;"<Cell "+VFill+" <CellContent <Para <PgfTag ‘Number’>"+CR)
SEND PACKET(vDoc;"<ParaLine <String
“+String([Inventory]Bags;"###")+">>>>>"+CR)
SEND PACKET(vDoc;"<Cell "+vFill+" <CellContent <Para <PgfTag ‘Body’>"+CR)
SEND PACKET(vDoc;"<ParaLine <String “'+[Inventory]Status+">>>>>"+CR)
SEND PACKET(vDoc;"<Cell "+VFill+" <CellContent <Para <PgfTag ‘Number’>"+CR)
SEND PACKET(vDoc;"<ParaLine <Conditional <InCondition ‘Retail’>>"+CR)
SEND PACKET(vDoc;"<String "' +String([Inventory]Price per Bag;"$#,###.00")+">")
SEND PACKET(vDoc;"<Conditional <InCondition ‘Discount’>>"+CR)
SEND PACKET(vDoc;"<String "' +String(vDiscPrice;"$### ###.00")+"> "+CR)
SEND PACKET(vDoc;"<Unconditional> >>>>>"+CR)
MESSAGE("Generating MIF for "+[Inventory]Name+", Status: "+[Inventory]Status+".")
NEXT RECORD([Inventory])
End for
SEND PACKET(vDoc;">>>"+CR) ‘End of table.
‘Body of page.
SEND PACKET(vDoc;"<TextFlow <TFTag ‘A’> <TFAutoConnect Yes>"+CR)
SEND PACKET(vDoc;"<Para <PgfTag ‘Heading’> <ParaLine <TextRectID 8>"+CR)
SEND PACKET(vDoc;"<String ‘GREEN COFFEE PRICE LIST'> <AFrame 1>>>"+CR)
SEND PACKET(vDoc;"<Para <PgfTag ‘Prepared’> <ParaLine <String ‘To order,
contact:’>>>"+CR)
SEND PACKET(vDoc;"<Para <PgfTag ‘Body’> <ParaLine <String "'+$1"+">>>"+CR)
SEND PACKET(vDoc;"<Para <PgfTag ‘Body2’>"+CR)
SEND PACKET(vDoc;"<ParaLine <String ‘Sales Representative’>>>"+CR)
SEND PACKET(vDoc;"<Para <PgfTag ‘Body2’>"+CR)
SEND PACKET(vDoc;"<ParaLine <String ‘Primo Coffee Distributors’>>>"+CR)
SEND PACKET(vDoc;"<Para <PgfTag ‘Body2’> <ParaLine "+CR)
SEND PACKET(vDoc;"<String "' +String(Num($2");" (###) #i#H#-#HHH")+">"+CR)
SEND PACKET(vDoc;"<ATbl 2> >>>"+CR) ‘Send the anchor for the table
CLOSE DOCUMENT(vDoc)
ALERT("Your MIF file is awaiting your attention.")

Online manual

ADOBE FRAMEMAKER 7.0
Examples

Creating several tables

The previous example illustrates how to use a database to create one table instance. Both the Thl s and the Text FI ow
statements are written to a single text file. This approach, however, is limited to this simple case. If the document
contains several tables, it may be more convenient to use the database to write the Thl s statement to a separate file
and then use a MIF i ncl ude statement to read the file into FrameMaker.

For example, suppose you need to publish a parts catalog. Each part has a name, a description, and a table that gives
pricing information. A typical record looks like this:

Valve Box Lids Put the part name and
" . . X description in a Text Fl
For 5.25" Shaft Buffalo style valve boxes. Lids come in three styles: water, |—— - te”’? ont.
gas, and sewer.
Marking Stock Number Price
Water 367-5044 $11.36 Put the table in a Thl s
| statement in a separate
Sewer 367-5046 $10.25 file.
Gas 367-5048 $12.49

In the database, all the information about each part is associated with its record. Due to the structure of MIF,
however, the information must appear in different portions of the MIF file: the part name and description belong in
the Text FI owstatement, while the table belongs in the Thl s statement. To accomplish this, you can make the
following modifications to the design of the database procedure shown in the previous example.

* At the beginning of the procedure, create two text files—one for the main MIF file that will contain the MIF file
identification line and the main text flow and the other for the Thl s statement.

» Use a second i ncl ude statement to read in the Tbl s statement

* Asyour procedure passes through each record, write the data that belongs in the Text FI owstatement in the main
text file and write the table data to the Tbl s file.

If you are using 4th Dimension, the procedure should have the following statements:

vDoc:=CREATE DOCUMENT (") ‘Prompts user to name main file.

vTbls:=CREATE DOCUMENT (Tbls.mif) ‘Hard codes name of include file.

SEND PACKET (vDoc;"<MIFFile 7. 00> #File ID")

SEND PACKET (vDoc;"include (template.mif")

SEND PACKET (vDoc;"include (Tbls.mif")
As you process the records, you write the table data to the second include file by referring to the vIbls variable in a
SEND PACKET command. For example:

SEND PACKET (vTbls; "<Cell <CellContent"+CR)
The main MIF file would have the following components:

<MIFFile 7.00># File ID

include (template.mif)# MIF template

include (Tbls.mif)# Table instances, created by
the database

232

Online manual

ADOBE FRAMEMAKER 7.0 | 233
Examples

<TextFlow# Main text flow

> # end of text flow
When FrameMaker opens the main MIF file, it will use the two i ncl ude statements to place the data and template
information in the required order.

Creating anchored frames

You can extend the technique of writing separate MIF files to handle both tables and graphics. Like table instances,
anchored frame instances must appear in the MIF file prior to the Text FI owstatement. If each record contains a
graphic or a reference to a graphics file on disk, you would create a separate text file called AFr ames. mi f for only the
AFr anes statement. Using the technique described in the previous section, you would insert the code for the tables
in the Tbl s. mi f file, the graphics in the AFr anes. mi f file, and the main text flow in the main text file. You use an
i ncl ude statement to read in the AFranes. ni f file.

Remember to assign unique ID numbers in the Tbl | D statement for each table and the | D statement for each frame.

Online manual

234

MIF Messages

When the MIF interpreter reads a MIF file, it might detect errors such as unexpected character sequences. In UNIX
versions, the MIF interpreter displays messages in a console window. In the Macintosh and Windows versions, you
must turn on Show File Translation Errors in the Preferences dialog box to display messages in a window (a console
window in the Windows version). If the MIF interpreter finds an error, it continues to process the MIF file and reads
as much of the document as possible.

General form for MIF messages
The general form of all MIF messages is:

M F: Line LineNum Message

The Li neNummay be approximate because it represents the absolute line number in the file after all macros in the file
have been expanded. In addition, if you open the MIF file in FrameMaker, lines are wrapped and the line numbers
may change.

The Message portion consists of one of the messages in the following table. (Italicized words/characters (for
example, 1) indicate variable words or values in a message.)

List of MIF messages

The tables in this section lists the MIF messages produced by the MIF interpreter and describes their meanings.

This message Means
--- Skipping these chars: The MIF file contains a syntax error or a MIF statement not sup-
MIF ported in this version of FrameMaker. FrameMaker ignores all

-(statements)... MIF statements contained within the erroneous or unsupported

__________ Done skipping. MIF statement.The ignored MIF statements are listed in the
error message.

A footnote cannot contain another footnote. One footnote in the MIF file is embedded in another.

Bad parameter: parameter. The MIF file contains a syntax error.

Cannot connect to TRNext ID 71. The text frame ID specified in a TRNext statement has no cor-
responding defined text frame.

Cannot find anchored frame 7. The graphic frame ID specified in an AFr anmes statement has
no corresponding defined graphic frame.

Cannot find footnote 7. The footnote ID specified in a FNOt e statement has no corre-
sponding defined footnote.

Cannot find table ID 1. MIF cannot match <ATbl X >with an earlier<Tbl <Tbl | D
X>> statement.

Cannot find text frame ID 1. The text frame ID specified in a Text Rect | Dstatement has
no corresponding defined text frame.

Cannot openﬁlename, Make sure that the file exists and that you have read access to it;
then try again.

Online manual

ADOBE FRAMEMAKER 7.0

This message

Means

Cannot store inset’s facets.

The MIF file contains a graphic inset, but the MIF interpreter
can't store the graphicinset in the document.There might be an
error in the MIF syntax, or there might not be enough temporary
disk space available.In UNIX versions, try to increase the space
available in your home directory or the / usr/ t np directory
and try again. In the Macintosh or Windows versions, try quit-
ting other applications and closing other open windows; then
start FrameMaker again.

Char out of range: character_value.

Acharacterina Char statement or a character expressed using
\ X in astring is out of range.

Condition settings must not change between <XRef> and
<XRefEnd>.

You cannot change a condition tag setting in the middle of a
cross-reference. Make sure the entire cross-reference is con-
tained in one condition setting.

DashedPattern statement has no DashedSegment state-
ments.

ADashedPat t er n statementgives DashedSt yl e avalue
of Dashed but has no DashedSegment statements to
define the dashed pattern.

Empty group: ID=t1.

The group ID specified in a Gr oup statement has no corre-
sponding defined objects with a matching group ID.

Expected comma/identifier/left parenthesis/right parenthe-
sis/right quote.

The MIF file contains a syntax error.

Following <TabStop> statements will determine actual num-
ber of tabs.

The Pgf Nunirabs statement is present in MIF for use by other

programs that read MIF files; it is not used by the MIF interpreter.

When the MIF interpreter reads a MIF file, it counts the number
of TabSt op statements to determine the number of tabs stops
in a paragraph.

Frames are nested too deeply (over 10); skipping statement.

There are too many nested frames.The maximum nesting depth
is 10.

Graphic frame has an invalid <Angle> attribute.

An invalid value is specified by the Angl e statement for a
graphic frame.

Insufficient memory!

FrameMaker cannot allocate enough memory for one of its
work buffers.In UNIX versions, try to free some swap space and
restart FrameMaker. In the Macintosh or Windows versions, try
quitting other applications and closing other open windows;
then start FrameMaker again.

Invalid opcode: 0p_code.

The MIF file contains a syntax error.

Macro/IncludeFile nesting too deep.

The define or include statements specify too many nested levels
of statements.

Missing dimension.

A necessary dimension value was not found in a MIF statement.

No name was given for the cross-reference format:
format_definition.

The XRef Nane statement is not specified for a cross-reference
format.

No name was given for the variable definition:
variable_definition.

The Var i abl eNane statement is not specified for a variable.

Object ignored; must come before <TextFlow> statements.

All object statements must come before the first Text FI ow
statement in a MIF file.

Processing opcode op_code.

FrameMaker is currently processing the specified opcode.

Skipped string.

The MIF file contains a syntax error.

235
MIF Messages

Online manual

ADOBE FRAMEMAKER 7.0 | 236

This message

Means

String too long (over 255 or 1023 characters); overflow
ignored.

The maximum length for most <UserString> strings is 1023
characters.The maximum length for all other strings is 255 char-
acters.

Structured MIF statement ignored.

This FrameMaker is set to use the unstructured program inter-
face,and so it does not support structured MIF statements.

Syntax error in <MathFullForm> statement.

The MIF file contains a syntax error in a Mat hFul | For mstate-
ment.

Unable to start new object.

FrameMaker cannot allocate memory for a new object.In UNIX
versions, try to free some swap space and restart FrameMaker.In
the Macintosh or Windows versions, try quitting other applica-
tions and closing other open windows; then start FrameMaker
again.

Unable to store marker.

The marker table is full. In UNIX versions, FrameMaker is proba-
bly running out of swap space.Try to free some swap space and
restart FrameMaker. In the Macintosh or Windows versions, try
quitting other applications and closing other open windows;
then start FrameMaker again.

Unbalanced right angle bracket.

Aright angle bracket (>) was found that has no corresponding
left angle bracket (<).

Unexpected opcode.

A statement was found in a context where it is not valid (for
example,an FFami | y statement in a Docunment statement).

Unexpected right angle bracket.

Aright angle bracket (>) was found where a data value was
expected or was found outside a statement.

Unknown font angle.

The requested font angle is not available.

Unknown font family.

The requested font family is not available.

Unknown font variation.

The requested font variation is not available.

Unknown font weight.

The requested font weight is not available.

Unknown PANTONE name: string.

The name specified in the Col or Pant oneVal ue statement
is not the name of a valid PANTONE color.

Value of 11 out of range (m).

A statement’s data value was too large or too small.

WARNING: Circular text flow was found and cut.

The MIF file defined a set of linked text frames resulting in a cir-
cular text flow. (The last text frame in the flow is linked to the
first or to one in the middle.) The MIF interpreter attempted to
solve the problem by disconnecting a text frame.

WARNING: Circular text flow. Don’t use the document.

The MIF file defined a set of linked text frames resulting in a cir-
cular text flow. (The last text frame in the flow is linked to the
first or to one in the middle.) The MIF interpreter was unable to
solve the problem. A FrameMaker document file will open, but
do not useit.

MIF Messages

Online manual

MIF Compatibility

MIF files are compatible across versions. However, some MIF statements have changed in version 7.0 of FrameMaker.
This appendix lists the MIF statements that are new or have changed in version 7.0 and describes how these state-
ments are treated when an earlier version reads a 7.0 MIF file. The appendix also lists changes between versions 7.0
and 6.0, and between earlier version upgrades of FrameMaker. MIF statements are listed by feature.

In general, when previous versions of FrameMaker read new MIF statements, the new MIF statements are stripped
out and ignored. For example, if version 4 of FrameMaker reads a new 7.0 MIF statement in a 7.0 MIF file,
FrameMaker ignores the statement.

Changes between version 6.0 and 7.0

This section describes changes to MIF syntax between versions6.0 and 7.0 of FrameMaker.

Changes to structured PDF

FrameMaker now includes attributes for graphic objects that are to be included when a document is saved as struc-

tured PDE. A graphic object can have an arbitrary number of attributes. Each attribute is stored in an Cbj ect At -

tri but e statement. This statement contains one Tag statement and an arbitrary number of Val ue statements.

General XML support

In versions 7.0 and later, documents and books store general XML information such as XML version, encoding, and
whether the XML is based on a DTD. This information is stored in the following statements:

Book statements
BXmIDocType
BXmIEncoding
BXmlFileEncoding
BXmlPublicld
BXmiStandAlone
BXmiStyleSheet
BXmISystemId
BXmIUseBOM
BXmlVersion

BXmIWellFormed

XML Namespaces

Document statements
DXmIDocType
DXmlEncoding
DXmlFileEncoding
DXmlPublicld
DXmlStandAlone
DXmiStyleSheet
DXmlSystemld
DXmlUseBOM
DXmlVersion

DXmIWellFormed

In versions 7.0 and later, elements in structured FrameMaker documents now store namespace information. The
ENanmespace statement contains an arbitrary number of namespace declaration. Each namespace declaration
consists of one ENanespacePr ef i x statement and one ENanenespacePat h statement.

237

Online manual

ADOBE FRAMEMAKER 7.0 | 238
MIF Compatibility

XMP job control packets

FrameMaker book and document files now store information to support XMP, the Adobe standard for collaboration
and electronic job control. MIF stores XMP data in a series of encoded XMP statements that contain the data. You
should not try to edit this data manually—FrameMaker generates the encoding when you save a file as MIE. This
XMP data corresponds with the values of fields in the File Info dialog box. In MIF, this data is stored as sub-state-
ments of <DocFi | el nf 0> and <BookFi | el nf 0>.

This XMP data contains the data that is stored in the PDFDoc| nf o and PDFBook| nf o statements.

Changes between version 5.5 and 6.0

This section describes changes to MIF syntax between versions 5.5 and 6.0 of FrameMaker.

Saving documents and books as PDF

FrameMaker documents now store information to support Structured PDFE. DPDFSt r uct ur e is a new statement
added to Docunent that specifies whether or not the document contains structure information to use when saving
as PDE. Pgf PDFSt r uct ur eLevel has been added to the Pgf statement to assign a structure level to paragraph
formats.

Books and documents can also include arbitrary fields of Document Info information. Documents use the
PDFDocl nf o statement, and books use PDFBook! nf o.

To improve handling of bookmarks hypertext links within and across PDF files, FrameMaker now stores reference
data within documents. Pgf Ref er enced identifies each paragraph that is marked as a named destination; El enen-
t Ref er enced similarly identified structure elements. If you like, you can specify that the Save As PDF function
creates a named destination for every paragraph in the document; this is done via FP_PDFDest sMar ked within the
Docurnent statement.

Books

Version 6.0 of FrameMaker has brought significant change to books. The book window now can display the filename
of each book component, or a text snippet from the component’s document. In MIF, BDi spl ayText determines
which type of information to display.

A book can also be view-only; MIF now includes BVi ewOnl y, BVi ewOnl yW nBor der s, BVi ewOnl yW nMenuBar ,
BVi ewOnl yPopup, and BVi ewOnl yNoOp statements to express whether a book is view-only, and how it should
appear.

Book Components

Book components store numbering properties to use when generating a book. The following table shows the new
MIF statements for managing different types of numbering:

Volume Chapter Page Footnote Table Footnote
VolumeNumStart ChapterNumStart ContPageNum BFNoteStartNum BTbIFNoteNumStyle
VolumeNumStyle ChapterNumStyle PageNumStart BFNoteNumStyle BTbIFNoteLabels
VolumeNumText ChapterNumText PageNumStyle BFNoteRestart BTbIFNoteCompute
Method

VolNumCompute- ChapterNumComp- BFNoteLabels
Method uteMethod

BFNoteCompute-

Method

Online manual

ADOBE FRAMEMAKER 7.0 | 239
MIF Compatibility

Documents

Because there are new numbering properties for documents and books, documents now have new numbering state-
ments. The following table shows the new MIF statements for managing different types of numbering in documents:

Volume Chapter Page Footnote
VolumeNumStart ChapterNumStart ContPageNum DFNoteComputeMethod
VolumeNumStyle ChapterNumStyle PageNumStart

VolumeNumText ChapterNumText PageNumStyle

VoINumComputeMethod ChapterNumComputemethod

Changes between version 5 and 5.5

This section describes changes to MIF syntax between versions 5 and 5.5 of FrameMaker.

Asian text processing

A section has been added to the MIF Reference to describe the new MIF statements that were added for Asian text in
a document. See , “MIF Asian Text Processing Statements.” for more information.

MIF file layout

A MIF file can now include a Conbi nedFont Cat al og statement that contains Cormbi nedFont Def n statements to
define each combined font for the document. The Conbi nedFont Cat al og statement must occur before the
Docunent statement. For information about combined fonts, see “Combined Fonts” on page 199.

Control statements

A new control statement, Char Uni t s, has been added to express whether characters and line spacing is measured by
points or by Q (the standard units of measurement for Japanese typography). The keywords for this statement are

CUpt and CUQ

Document statements
The DPageNunst yl e and DFNot eNunSt y| e statements have new keywords to express Japanese footnote numbering

formats. The new keywords are ZenLCAl pha, ZenUCAl pha, Kanj i Numer i ¢, Kanj i Kazu, and Busi nessKazu.

DTr apwi seConpat i bi | i ty is a new statement that determines whether generated PostScript will be optimized for
the TrapWise application.

DSuper scri pt Stret ch, DSubscri pt Stretch, and DSmal | CapsSt r et ch are new statements that specify the
amount to stretch or compress superscript, subscript, or small caps text.

Color statements

MIF 5.5 now supports a number of color libraries. In the Col or statement, the Col or Pant oneVal ue statement is no
longer used. Instead, Col or Fani | yNane specifies the color library to use, and Col or | nkNane identifies the specific
pigment. Note that the full name must be provided for Col or I nkNane.

The Col or statement can also express a tint as a percentage of a base color. Col or Ti nt Per cent age specifies the
percentage, and Col or Ti nt BaseCol or specifies the base color to use.

Online manual

ADOBE FRAMEMAKER 7.0 | 240
MIF Compatibility

Col or Over pri nt is a new statement that assigns overprinting to the color. If a graphic object has no overprint
statement in it, the overprint setting for that object’s color is assumed.

Paragraph and Character statements

In version 5.5, the Pgf Font and Font statements can now include the FLanguage statement to define a language for
a range of text within a paragraph.

The PgfFont and Font statements include statements to describe combined fonts. For information on combined
fonts, see “Combined Fonts” on page 199.

The PgfFont and Font statements include a new FEncodi ng statement to specify the encoding used for the font. The
keywords for this statement are: J1 SX0208. Shi ftJI'S, Bl G5, GB2312-80. EUC, or KSC5601-1992.

FStret ch is a new statement to define the amount to stretch or compress a range of characters.

Text inset statements

The Ti Text and Ti Text Tabl e statements respectively include two new statements, Ti Txt Encodi ng and Ti Txt T-
bl Encodi ng, to specify the text encoding for the source file. Both of these new statements can have one of the
following keywords: Ti | soLat i n, Ti ASCI | , Ti ANSI , Ti MacASCl |, Ti JI S, Ti Shi ft JI S, Ti EUC, Ti Bi g5, TI EUCCNS,
Ti GB, Ti HZ, or Ti Kor ean.

Marker statements

In FrameMaker 5.5, users can now define named custom markers. MlypeNane is a new statement to specify the
marker name. The MIype statement is still written out for backward compatibility, but FrameMaker 5.5 reads
MTypeName when present.

Graphic object statements

If the Over pri nt statement is not present in a graphic object, the overprint setting for the object’s color is assumed.

ObTi nt applies a tint to whatever color is assigned to the object. If the object’s color already has a tint, the two tint
values are added together.

Structured element definition statements

EDAt t r Hi dden is a new statement in the EDAt t r Def that specifies whether an attribute is hidden or not.

FStretch and FSt r et chChange are new statements added to the Fnt ChangeLi st to specify how much to stretch
or compress the characters in an element.

Changes between versions 4 and 5

This section describes changes to MIF syntax between versions 4 and 5 of FrameMaker.

Changes to existing MIF statements

In version 5, the following MIF statements have changed or now have additional property statements.

* Paragraph statements

» Character statements

Online manual

ADOBE FRAMEMAKER 7.0 | 241
MIF Compatibility

* Table statements

* Document statements

o Text frame statements

« Text flow statements

* Graphic frame statements

 Text inset and data link statements
* Structured document statements

Version 5 also introduces a new internal graphic format for imported vector graphics.

Paragraph statements

In version 5, paragraphs can span all text columns and side heads or span columns only. As a result of this change,
the Pgf Pl acenent Sty e statement now supports the additional keyword St r addl eNor mal Onl y, which indicates
that the paragraph spans text columns but not side heads.

For supporting the capability to create PDF bookmarks from paragraph tags, the new Pgf Acr obat Level statement
has been added. This statement specifies the paragraph’s level in an outline of bookmarks.

For more information about the MIF syntax for paragraphs, see “Pgf statement” on page 58.

Character statements

In version 5, the FDX, FDY, and FDWstatements, which specify the horizontal kern value, the vertical kern value, and
the spread of characters, now measure in terms of the percentage of an em.

In previous versions, the FDX and FDY statements specified values in points. When reading MIF files from previous
versions, FrameMaker in version 5 will convert points into the percentage of an em. Previous versions of
FrameMaker generate error messages when reading FDX and FDY statements specifying percentages, since these
products expect the kerning value in points.

Table statements

In version 5, tables can be aligned along the inside or outside edge (in relation to the binding of a book) of a text
column or text frame. As a result of this change, the Tbl Al i gnnment statement now supports the additional keywords
I nsi de and Qut si de.

In addition, the existing Tbl Ti t | eCont ent statement is now contained in the new Thl Ti t | e statement.

For more information about the MIF syntax for tables, see “Tbl statement” on page 72.

Document statements

In version 5, the DAcr obat Bookmar ksl ncl udeTagNanes statement has been added under the Docunent statement
to support the conversion of paragraph tags to bookmarks in Adobe Acrobat. By default, this statement is set to No.

Another new statement, DGener at eAcr obat | nf o, sets print options to the required states for generating Acrobat
information. By default, this statement is set to Yes.

For Macintosh publishers, the new DLi nkBoundar i esOn statement specifies whether or not the boundaries of the
publisher are visible.

For View Only documents, the default value of the DvVi ewOnl ySel ect statement has changed from Yes to User Onl y.

Online manual

ADOBE FRAMEMAKER 7.0 | 242
MIF Compatibility

For text insets, the following statement has been renamed:

MIF 4.00 MIF 5.00

<DUpdateDataLinksOnOpen bool ean> <DUpdateTextInsetsOnOpen bool ean>

Document and text flow statements

In version 5, the MIF statements describing interline spacing and padding, which appeared under the Docunent
statement in previous versions, have been replaced by corresponding statements under the Text Fl ow statement:

MIF 4.00 MIF 5.00
<DMaxInterLine di mensi on> <TFMaxInterLine di nensi on>
<DMaxInterPgf di mensi on> <TFMaxInterPgf di nensi on>

In version 5, if FrameMaker finds the DVax| nt er Li ne and Dvax| nt er Pgf statements in a 4.00 document,
FrameMaker applies these settings to all flows in the document.

Text frame and text flow statements

Version 5 introduces text frames, which are composed of any number of text columns separated by a standard gap.
In MIF files, text frames are described by the same statement used in previous versions for text columns, the
Text Rect statement.

In version 5, three new statements have been added under the Text Rect statement to specify multicolumn text
frames:

e <TRNunmCol ums i nt eger >
e <TRCol umGap di mensi on>
¢ <TRCol umBal ance bool ean>

When reading 5.00 MIF files, previous versions of FrameMaker will remove these statements and assume that the
text frame is actually a single text column.

When reading MIF files from previous versions, FrameMaker in version 5 will convert multiple text columns on a
page into a single, multicolumn text frame. To represent each text column as a separate text frame, include the MIF
statement <TRNunCol unms 1> in the description of each Text Rect statement.

Side head layout information has been transferred from the Text FI owstatement to the Text Rect statement. The
following statements, which appeared under the Text FI owstatement in previous versions, are replaced by corre-
sponding statements under the Text Rect statement in 5.00:

MIF 4.00 MIF 5.00

<TFSideheadWidth di mensi on> <TRSideheadWidth di nensi on>
<TFSideheadGap di mensi on> <TRSideheadGap di mensi on>
<TFSideheadPlacement keywor d> <TRSideheadPlacement keywor d>

If FrameMaker in version 5 finds the Text FI ow MIF statements for side heads, FrameMaker will convert these state-
ments to the equivalent statements under the Text Rect statement.

If these types of statements are found under both the Text Rect statement and the Text FI owstatement, the state-
ments under the Text Rect statement will be used.

Online manual

ADOBE FRAMEMAKER 7.0
MIF Compatibility

Note that the existence of side heads in a text flow is still specified by the TFSi deheads statement, which is under the
Text Fl ow statement.

For more information about the MIF syntax for text frames, see “TextRect statement” on page 118. For more infor-
mation about the MIF syntax for text flows, see “Text flows” on page 119.

Graphic frame statements

In version 5, graphic frames can be anchored inside or outside text frames. Graphic frames can also be aligned along
the inside or outside edge of a text frame (in relation to the binding of a book). Finally, graphic frames can be
anchored outside the entire text frame or one column in the text frame.

As a result, the following changes to 4.00 MIF have been made:
 The Fr aneType statement now supports the additional keywords | nsi de, Qut si de, and Runl nt oPar agr aph.
» The Anchor Al i gn statement now supports the additional keywords I nsi de and Qut si de.

* Version 5 introduces the new Anchor Besi de statement to indicate whether the graphic frame is anchored outside
the entire text frame (Text Fr ame) or outside one column in the text frame (Col umm).

* When editing FrameMaker document files from previous versions, FrameMaker assumes that this statement has
the value <Anchor Besi de Col umm>.

For more information about the MIF syntax for graphic frames, see “Frame statement” on page 107.

Text inset and data link statements

In previous versions, Macintosh versions of FrameMaker allowed you to import text by reference with the Publish
and Subscribe mechanism. The MIF Dat aLi nk statement described text that was published or subscribed.

In version 5, the capability to import text by reference, which creates a text inset, is available on all platforms. As a
result of this new feature, the new Text | nset statement replaces the Dat aLi nk statements for subscribers.

Note that the Dat aLi nk statements for publishers are still used.

The following table lists the old Dat aLi nk statements and the new Text | nset statements that replace them.

MIF 4.00 MIF 5.00

<DataLink...> <Textlnset...>
<DLSource pat hname> <TiSrcFile pat hname>
<DLParentFormats Yes> <TiFormatting TiEnclosing>
<DLParentFormats No> <TiFormatting TiSource>
<OneLinePerRec bool ean> <EOLisEOP bool ean>
<MacEdition i nt eger > <TiMacEditionId i nt eger >
<DataLinkEnd> <TextInsetEnd>

If you open a 5.00 MIF file with text insets in a version 4 FrameMaker product, the older version of the product will
strip out the text inset MIF statements. The text inset becomes plain text that cannot be updated.

For more information about the MIF syntax for text insets, see “Text insets (text imported by reference)” on
page 127. For information about the MIF syntax for publishers, see “Publishers” on page 133.

243

Online manual

ADOBE FRAMEMAKER 7.0 | 244
MIF Compatibility

Structured document statements

In version 5, FrameMaker does not support statements for structured documents, such as El enent Def Cat al og and
DEl ement Bor der sOn. FrameMaker strips these statements when reading in a MIF file. When writing out a MIF file,
FrameMaker does not write these statements.

FrameVector graphic format

In version 5, a new internal graphic format, FrameVector, is supported for imported vector graphics. The specifica-
tions for this facet are described in , “FrameVector Facet Format.”

Changes between versions 3 and 4

This section describes the changes to MIF syntax between versions 3 and 4 of FrameMaker.

4.00 top-level MIF statements

The following table lists top-level statements introduced between versions 3 and 4 of FrameMaker.

New statement Action in earlier versions
<ColorCatalog...> All custom colors revert to Cyan
<Views...> Ignored

Changes to 3.00 MIF statements

This section describes the statements that have changed or that have introduced additional property statements
between versions 3 and 4 of FrameMaker. MIF statements that have changed include:

* Color statements

+ Math statements

¢ Character format statements
* Object statements

* Page statements

Color statements

The following table lists the changes for color property statements.

MIF 3.00 MIF 4.00

<FSeparation i nt eger > <FColor string>
<CSeparation i nt eger > <CColor string>
<RulingSeparation i nt eger > <RulingColor string>
<Separation i nt eger > <ObColor string>
<TblHFSeparation i nt eger > <TblHFColor string>
<TblBodySeparation i nt eger > <TblBodyColor string>
<TblXSeparation i nt eger > <TblXColor string>

Online manual

ADOBE FRAMEMAKER 7.0
MIF Compatibility

MIF 3.00 MIF 4.00
<CellSeparation i nt eger > <CellColor string>
<DChBarSeparation i nt eger > <DChBarColor string>

Separ at i on values refer to the reserved, default colors that appear in the Color pop-up menu in the FrameMaker
Tools palette.

This value Corresponds to this color
<Separation 0> Black

<Separation 1> White

<Separation 2> Red

<Separation 3> Green

<Separation 4> Blue

<Separation 5> Cyan

<Separation 6> Magenta

<Separation 7> Yellow

Version 4 and later versions of FrameMaker read separation statements and convert them to the equivalent color
statements. FrameMaker writes both color statements and separation statements for backward compatibility. For the
reserved default colors, FrameMaker writes the equivalent separation value. For custom colors, FrameMaker writes
the separation value 5 (Cyan) so that you can easily find and change custom colors.

If your application creates files that will be read by both older (before version 4) and newer (after version 4)
FrameMaker product versions, include both color and separation statements in the MIF files; otherwise, use only the
color statements.

Math statements

The following table lists the changes for math statements.

MIF 3.00 MIF 4.00
DMathltalicFunctionName DMathFunctions
DMathItalicOtherText DMathNumbers, DMathStrings, DMathVariables

In addition, thedi acri ti cal expression defines new diacritical marks (see “Using char and diacritical for diacritical
marks” on page 184). The di acri ti cal expression is not backward compatible.

Character format statements

The following table lists the changes in Font and Pgf Font statements.

MIF 3.00 MIF 4.00

<FUnderline bool ean> <FUnderlining FSingle>
<FDoubleUnderline bool ean> <FUnderlining FDouble>
<FNumericUnderline bool ean> <FUnderlining FNumeric>

245

Online manual

ADOBE FRAMEMAKER 7.0 | 246
MIF Compatibility

MIF 3.00 MIF 4.00
<FSupScript bool ean> <FPosition FSuperscript>
<FSubScript bool ean> <FPosition FSubscript>

If your application only reads or writes files for version 4 or later versions of FrameMaker, use only the 4.00 state-
ments. If your application reads or writes files for version 3 or previous versions of FrameMaker, use only the 3.00
statements. Do not use both statements.

The MIF interpreter always reads the MIF 3.00 statements. It writes both 3.00 and 4.00 statements for backward
compatibility.
Object statements

The following table lists the changes in graphic object statements (see “Graphic objects and graphic frames” on
page 101).

MIF 3.00 MIF 4.00
<Angle 0[90]180]270 > <Angl e degrees>
<BRect> <ShapeRect>

Text lines, text frames, imported graphics, table cells, and equations that are rotated at an angle of 90, 180, or 270
degrees retain rotation in earlier versions. If these objects are rotated at any other angle, they are rotated back to 0
degrees in the earlier version. All other objects are rotated back to 0 degrees.

FrameMaker writes both BRect and ShapeRect values for backward compatibility. For text lines, text frames,
imported graphics, table cells, and equations that are rotated at an angle of 90, 180, or 270 degrees, the BRect value
is the position and size of the object after rotation. For any object rotated at any other angle, the BRect value is the
position and size of the object before rotation, which is the same as the ShapeRect value.

Device-independent pathnames

The following codes for pathname components in a device-independent pathname are obsolete and are ignored by
the MIF interpreter.

Code Meaning

A Apollo-dependent pathname

D DOS-dependent pathname

M Macintosh-dependent pathname
U UNIX-dependent pathname

For information about valid codes, see “Device-independent pathnames” on page 8.

Document statements

The following changes have been made to Document statements.

MIF 3.00 MIF 4.00

<DCollateSeparations bool ean> <DNoPrintSepColor> and <DPrintProcessColor>

Online manual

ADOBE FRAMEMAKER 7.0 | 247
MIF Compatibility

In addition, the Document statement has a number of new property statements that set options for View Only
documents (see page 87), set options for structured documents, and define custom math operators (see page 174).

Page statement

The following change has been made to the Page statement.

MIF 3.00 MIF 4.00

<PageOrientation keywor d> <PageAngl e> and <DPageSi ze>

A page’s size and orientation (landscape or portrait) is determined by the PageAng! e statement and the Docunent
substatement DPageSi ze. FrameMaker writes the PageQOr i ent at i on statement for backward compatibility. MIF
generators should use the PageAngl e statement instead of PageOri ent ati on.

When the MIF interpreter reads a Page statement that includes both a PageAngl e and a PageQri ent at i on
statement, it ignores the PageOri ent at i on statement. When the interpreter reads a Page statement that contains a
PageQOri ent at i on statement but no PageAng| e statement, it determines the page’s angle from the PageOri en-
tati on statement. If the page orientation matches the orientation determined by the DPageSi ze statement, the
page’s angle is 0 degrees; otherwise, the page’s angle is 90 degrees. A page that has neither a PageAngl e nor a
PageOri ent at i on statement has an angle of 0 degrees.

Online manual

248

Facet Formats for Graphics

When you copy a graphic into a FrameMaker document, the FrameMaker document stores the graphic data in one
or more facets. Each facet contains data in a specific graphic format. FrameMaker uses facets to display and print
graphics.

In UNIX versions of FrameMaker, you can associate a graphic application with FrameMaker through the
FrameMaker API or through the FrameServer interface. You can set this up so that the graphics created and modified
in the graphic application can be imported directly into a FrameMaker document. The graphic application becomes
a graphic inset editor. Graphic inset editors write graphic data to graphic insets, which can be read by FrameMaker.

For more information on setting up graphic inset editors, see the FDK Programmer’s Guide and the online manual,
Using FrameServer with Applications and Insets. Both manuals are provided with the UNIX version of the Frame
Developer’s Kit.

The first part of this appendix describes the general format for a facet in a MIF file. The second part of this appendix
explains the graphic inset format.

If you are using the API to implement the graphic inset editor, the syntax described in this appendix applies only to
external graphic insets. For information on specifying facet names, data types, and data for internal graphic insets, see
the FDK Programmer’s Guide.

Facets for imported graphics

A graphic imported by copying into a FrameMaker document contains one or more facets. Each facet describes the
imported graphic in a specific graphic format. All imported graphics copied into a document contain one or more
facets used to display and print the file.

FrameMaker might not use the same facet for displaying and printing a graphic. For example, the Macintosh version
of FrameMaker might use a QuickDraw PICT facet for displaying the graphic and an EPSI facet for printing the
graphic.

When printing an imported graphic, FrameMaker selects one of the following facets (in order of preference):
+ EPSI (Encapsulated PostScript)

* Native platform facet (QuickDraw PICT, WMF)

» FrameVector

« TIFF

+ Framelmage and other bitmap facets

When displaying an imported graphic, FrameMaker selects one of the following facets (in order of preference):
* Native platform facet (QuickDraw PICT, WMF)

» FrameVector

* Framelmage

» TIFF

¢ Other bitmap facets

Online manual

ADOBE FRAMEMAKER 7.0 | 249
Facet Formats for Graphics

All versions of FrameMaker recognize EPSI (with DCS Cyan, DCS Magenta, DCS Yellow, and DCS Black for color
separations), TIFE, Framelmage, and FrameVector facets. Macintosh versions of FrameMaker also recognize
QuickDraw PICT and QuickTime facets. Windows versions of FrameMaker also recognize WMF and OLE facets.

If the graphic data does not have a corresponding facet supported by FrameMaker for displaying or printing,
FrameMaker can use filters to convert the graphic data into one of two internal facets: FrameImage (for bitmap data)
and FrameVector (for vector data). For example, FrameMaker does not have a facet for HPGL, so HPGL data is
converted into a FrameVector facet.

In Macintosh and Windows versions of FrameMaker, users can choose to automatically save a cross-platform facet
of an imported graphic. If a cross-platform facet does not already exist, FrameMaker generates a Framelmage facet
for the imported graphic.

Basic facet format
A facet consists of a facet name, a data type, and a series of lines containing facet data. For example:

=EPSI
&% v
&%!PS-Adobe-2.0 EPSF-2.0\n

Facet name

The first line of a facet identifies the facet by name. The facet name line has the following format:

=facet_name

The facet name can be one of the standard display and print facets or an application-specific name registered with
FrameMaker. (For information about registering your application-specific facets, see the FDK Platform Guide for
your platform, which is included with the Frame Developer’s Kit.)

Data type
The second line provides the data type of the facet: unsigned bytes (&%), integer (&%), or metric (&%m).

If the facet data is binary (such as Framelmage and FrameVector data) or if it contains ASCII characters (such as EPSI
data, as shown in the preceding example), the facet uses the unsigned bytes data type (&%).

For example, the following line is the second line in a facet that contains data represented as unsigned bytes:

&% v

Facet data

The remaining lines contain the facet data. Each line begins with an ampersand (&).

The end of the data for a facet is marked by the beginning of a new facet. Thus, a line with a new facet name signals
the end of the previous facet data.

The end of the last facet in the graphic inset is marked by the following line:

=EndInset

Online manual

ADOBE FRAMEMAKER 7.0
Facet Formats for Graphics

Unsigned bytes

If the facet data contains a backslash character, another backslash precedes it as an escape character. For example, if
the data contains the string x\ yz, the facet contains x\\yz.

Within the facet data, nonprintable ASCII characters or non-ASCII bytes (greater than 7f) are represented in
hexadecimal.

Any section of data represented in hexadecimal is preceded and followed by the characters \ x. For example, the
following Framelmage facet contains data represented in hexadecimal, which is enclosed between two sets of \ x
characters:

=Framelmage
&% v

&\x
&59a66a95
&00000040

&0000FCO0001FC0000
&\x
=EndInset

Integer data

The integer data type stores integer values in a facet. For example, the f nbi t map program stores the dimensions of
the graphic, the x-coordinate of the hot spot, and the y-coordinate of the hot spot as integer data in a facet:

=Data.facet
&%i

&64

&64

&-1

&-1

Metric data

Metric data describes a graphic in terms of units of measurement. The following table shows the abbreviations used
to denote units within a facet.

Units Abbreviation
Centimeters cm

Ciceros cicero,cc
Didots dd

Inches in"
Millimeters mm

Picas pi ca,pi,pc
Points poi nt,pt

250

Online manual

ADOBE FRAMEMAKER 7.0 | 251
Facet Formats for Graphics

Graphicinsets (UNIX versions)

A graphic inset contains graphic data that can be written by a graphic application and used by FrameMaker to display
and print an imported graphic. A graphic inset can also specify a live link, which associates an imported graphic in
a FrameMaker document with the graphic application used to edit the graphic. A live link can be set up through
FrameServer functions or through an FDK client.

When a live link is established between an imported graphic and a graphic application, users can edit the graphic in
a graphic application and directly import the graphic into a FrameMaker document. For more information on live
links, see the FDK Programmer’s Guide, which is provided with the FDK, or the online manual, Using FrameServer
with Applications and Insets, which is provided with the UNIX version of the FDK.

To set up a live link between a graphic application and a FrameMaker document, you need to add functions to your
application to write out graphic data as a graphic inset.

A graphic inset consists of an | nport Obj ect statement that contains one or more facets for display and print. If
your application requires additional information not supported by the display and print facet, the graphic inset also
needs one or more application-specific facets to store this additional information.

The two types of graphic insets are internal graphic insets and external graphic inset files. Each type results in a slightly
different type of integration between FrameMaker and your application. You can choose the type of graphic inset
that your application supports. In most cases, one format is adequate, but you might want to give users more than
one option. Both types require a display and print facet.

External graphic insets

An external graphic inset file remains independent of the FrameMaker document. The FrameMaker document
contains only a pathname for the graphic inset file. Because the graphic inset data is not contained in the
FrameMaker document, users can access the graphic inset data from FrameMaker, from your application, or from
another application.

To edit an external graphic inset from FrameMaker, users must open FrameMaker document, select the graphic
inset, and choose the Graphic Inset command from the Special menu. FrameMaker passes the external graphic inset
filename to your application and instructs your application to edit the graphic inset. When users finish editing a
graphic inset, they issue your application’s command for pasting a graphic inset to FrameMaker, and FrameMaker
immediately updates the graphic inset file.

If users edit the graphic inset from another application, FrameMaker displays the updated graphic inset the next time
the document is opened. Note that if the graphic inset file is moved or deleted, FrameMaker will be unable to display
the data and will inform the user that the graphic inset is missing.

A
Y
Y

% |
I

[N Dv ——
Your graphic External graphic inset
application file —

FrameMaker document

Online manual

ADOBE FRAMEMAKER 7.0
Facet Formats for Graphics

External graphic insets are best suited to situations in which users are documenting projects in progress or in which
the document’s graphics are updated by external sources (for example, by a database).

An external graphic inset file contains a M FFi | e statement and an | npor t Obj ect statement. The | npor t Obj ect
statement lists the graphic inset file’s pathname, the name of the inset editor that created it, and all of its facets.

An external graphic inset file has the following format:

<MIFFile 7.00>
<ImportObject
<ImportObEditor i nset _edi t or _nane>
<ImportObFileDI devi ce_i ndependent _pat hname>
=facet _nane
&data_type
&facet _data

=facet _nane
&data_type
&facet _data

=EndInset

>

A MIF | nport CbEditor statement names the main editor for application-specific facets in the graphic inset
file.

A MIF | nport CoFi | eDl statement specifies the device-independent pathname for the graphic inset file. For more
information on device-independent pathnames, see the section “Device-independent pathnames” on page 8.

Internal graphic insets

An internal graphic inset is entirely contained within FrameMaker document file. Once the link is established, the
graphic inset data exists only in FrameMaker document.

Users can access the graphic only through FrameMaker. To edit an internal graphic inset, users must open
FrameMaker document, select the graphic inset, and choose the Graphic Inset command from the Special menu.
FrameMaker writes the graphic inset to a temporary file and instructs your application to edit it.

A
|4

%|

L)W (C

IHm) T}

Your graphic
application

FrameMaker document with internal
graphic inset

Internal graphic insets are best suited for environments in which portability of FrameMaker document across
different types of systems is most important.

Online manual

252

ADOBE FRAMEMAKER 7.0 | 253
Facet Formats for Graphics

When FrameMaker creates temporary files for internal graphic insets, the temporary files have the following format:

<MIFFile 7.00>
<ImportObject
<ImportObEditor i nset _edi t or_nane>
<ImportODbFile *2.0 internal inset’>
=facet _nane
&data_type
&facet _data

=facet _nane
&data_type
&facet _data

=EndInset

>

Because the graphic inset is stored in FrameMaker document, the file does not have an | nport CoFi | eDl
statement.

The I nport ObFi | e statement identifies the file as a FrameMaker version 2.0 internal graphic inset file for compat-
ibility with earlier versions of FrameMaker. If you do not plan to use the graphic insets generated by your application
with earlier versions of FrameMaker, you can omit this statement.

Application-specific facets
Application-specific facets can be in any format your application understands, and a graphic inset file can contain as

many application-specific facets as you want.

When selecting application-specific facets for your graphic inset file, you might want to include an industry-standard
facet (for example, EDIF for EDA applications) so that you can use the graphic inset file to share data with applica-
tions other than FrameMaker.

Application-specific facets can be contained entirely within the graphic inset file (a local facet), or the graphic inset
file can contain a reference to an external data file or database (a remote facet).

Local application-specific facets

A local application-specific facet is contained in the graphic inset file. The formats for external and internal graphic
insets (described in the sections “External graphic insets” on page 251 and “Internal graphic insets” on page 252)
apply to local application-specific facets.

Online manual

ADOBE FRAMEMAKER 7.0 | 254
Facet Formats for Graphics

The following illustration shows the relationship between your application, FrameMaker document, and a graphic
inset file with a local application-specific facet.

Display and print facet

@|
I

> >
-—
V =
Your graphic
application —
FrameMaker document

Graphic inset with a local
application-specific facet

Online manual

ADOBE FRAMEMAKER 7.0
Facet Formats for Graphics

Remote application-specific facets

A remote application-specific facet contains the pathname or database key for an existing data file or database. Since
application-specific data is normally duplicated in a separate application file, remote facets conserve file space.
Because the application-specific facet contains only a pathname, remote facets are easier to implement.

3 Display and print facet

|

\i

\J

(

—

YA
N

-

== =
Your graphic
application o] A

Graphic inset with a remote

application-specific facet

FrameMaker document
Y

Application-specific facet

(:0) 10
(&ge

Y

Remote application-specific facet data

Display and print facets must be contained in the graphic inset file. They cannot be remote facets.

To write a remote facet, your graphic application must write an application data file and store its data type and
pathname in the graphic inset file. A remote application-specific facet has the following format:

=facet_name

&facet_type

&path_for_facet_file

=EndInset

For example, the following lines describe the remote facet described in the application data file
/ di agranms/ Bl ockDi agr am

=application_name.facet
&%V
&/diagrams/BlockDiagram
=EndInset

Example of graphicinset file

The following example is the external graphic inset file generated by the f nbi t map program, which is shipped with
the UNIX version of the FDK.

255

Online manual

ADOBE FRAMEMAKER 7.0
Facet Formats for Graphics

The graphic inset file is named /t np/ def aul t. fi . The application-specific facet for this graphic inset (the file
generated by the f nbit map program) is stored in a remote facet in the file /t np/ def aul t.

Note that although the f nbi t map program writes out the | nport ObFi | e statement, this statement is obsolete and
is only used with older versions of FrameMaker. When defining a function to write a graphic inset file, use the

I mpor t QbFi | eDl statement and specify a device-independent pathname. For more information on device-
independent pathnames, see “Device-independent pathnames” on page 8.

<MIFFile 7.00># Generated by fmbitmap

<ImportObject

<ImportObFile /tmp/default.fi>
<ImportObEditor fmbitmap>

=BitmapFile.facet
&%V
&/tmp/default
=Data.facet
&%1
&64
&64
&-1
&-1
=Framelmage
&% v
&\x
& ...
&\x
=EndInset

>
To see more examples of the graphic inset format, you can import a graphic into a FrameMaker document (import
by copying) and save the FrameMaker document as a MIF file.

General rules for reading and writing facets

To write a facet, you need to modify the existing function in your application for writing data. The function must
write the facet name and data type lines and insert an ampersand at the beginning of each line of facet data. If
necessary, convert data lines to the appropriate facet data format. Unsigned bytes should follow the conventions
described in “Unsigned bytes” on page 250, and metric data should follow the conventions described in “Metric
data” on page 250.

When writing the facet data, your application can use as many lines as necessary. Each line should be short enough
to read with a text editor, in case you need to debug the graphic inset file. There are no counts, offsets, or facet size
limits.

Facet data in hexadecimal must contain valid hexadecimal digits only (0-9, A-F) and cannot contain backslash (\)
characters. When you write a facet containing hexadecimal data, do not write newline characters (\r or \ n) at the
end of the lines.

Graphic insets cannot contain any blank lines within or between facets.

256

Online manual

ADOBE FRAMEMAKER 7.0 | 257
Facet Formats for Graphics

When reading a graphic inset, your application need only scan for facet name lines and then read the appropriate
facets. Since facets begin and end with the =f acet _name token, your program should read facet data until it
encounters an equal sign in column 1.

If your application encounters the characters \ x when reading facet data, it should process the subsequent data as
hexadecimal until it encounters another \ x. If your facet contains a mix of ASCII characters and hexadecimal data,
it might be simpler for you to represent the ASCII characters as character codes in hexadecimal. For example, the
FrameVector format represents strings (such as bl ack) as character codes in hexadecimal (such as 62 6c 61 63 6b).

Online manual

258

EPSI Facet Format

EPSI is an interchange standard developed by Adobe Systems Incorporated. You can obtain a complete specification
of the EPSI format from Adobe Systems Incorporated.

Imported graphics can contain graphic data in EPSI format. This data is called the EPSI facet of the graphic.
FrameMaker can use this facet to display and print the graphic. For more information about facets, see , “Facet
Formats for Graphics.”

In a MIF file, the EPSI facet is contained in the | npor t Obj ect statement. For more information about the statement,
see “ImportObject statement” on page 110.

Specification of an EPSI facet
An EPSI facet begins with the following facet name and data type lines:

=EPSI
&%V
Each line of EPSI facet data ends with \ n.

When FrameMaker imports a graphic inset with an EPSI facet, FrameMaker uses the EPSI bounding box to
determine the graphic inset’s size. If the bounding box does not fit on the page, FrameMaker halves its dimensions
until it fits.

Example of an EPSI facet

The following rectangle is an imported graphic:

The following MIF statements describe the imported graphic. The graphic data that specifies the rectangle is an EPSI
facet.

<ImportObject
<BRect 0 0 0.25" 0.25">
<Pen 15> <Fill 15>
<ImportODbFile *2.0 internal inset'>
=EPSI
&%v
&%!PS-Adobe-2.0 EPSF-2.0\n
&% %BoundingBox: 0 0 18 18\n
&% %Pages: 0\n
&%%Creator: contr2\n
&% %CreationDate: Tue Apr 25 16:09:56 1989\n
&% %EndComments\n

Online manual

ADOBE FRAMEMAKER 7.0 | 259
EPSI Facet Format

&%%BeginPreview: 18 18 1 18\n
&%FFFFCO0\n

&%FFFFCO\n

&%FFFFCO\n

&%FFFFCO\n

&%FFFFCO\n

&%FFFFCO\n

&%FFFFCO\n

&%FFFFCO\n

&%FFFFCO\n

&%FFFFCO\n

&%FFFFCO\n

&%FFFFCO\n

&%FFFFCO\n

&%FFFFCO\n

&%FFFFCO\n

&%FFFFCO\n

&%FFFFCO\n

&%FFFFCO\n
&%%EndPreview\n

&% %EndProlog\n
&%%Page: "one" 1\n

&0 0 moveto 18 0 rlineto 0 18 rlineto -18 0 rlineto closepath 0 setgray\n
&fill\n

&% % Trailer\n

=EndInset

> # End ImportObject

Online manual

260

Framelmage Facet Format

Framelmage is a format for bitmap graphics that is recognized by FrameMaker on all platforms. The specification
of the Framelmage format is documented in this appendix.

Imported graphics can contain graphic data in Framelmage format. This data is called the Framelmage facet of the
graphic. FrameMaker can use this facet to display and print the graphic. For more information about facets, see
, “Facet Formats for Graphics.”

In a MIF file, the Framelmage facet is contained in the | npor t Obj ect statement. For more information about the
statement, see “ImportObject statement” on page 110.

Specification of a Framelmage facet
A Framelmage facet begins with the following facet name and data type lines:

=Framelmage

&%v

When importing a graphic with a FrameImage display and print facet, FrameMaker prompts the user to specify the
graphic inset’s print resolution in the Imported Graphic Scaling dialog box. The print resolution determines the size
of the imported graphic.

Specification of Framelmage data

A description of a graphic in FrameImage format consists of three parts:

* A header, which describes the dimensions and other characteristics of the graphic
* An optional color map, included only if the graphic uses colors

* Data describing the bitmap of the imported graphic

The description is written as integer values in hexadecimal format. Each line is preceded by an ampersand (&). The
data section begins with the % characters, which indicate that the Framelmage data is represented as unsigned bytes.
The beginning and end of the data are bracketed by the symbol \ x, which indicates that the data is in hexadecimal
format.

Header

The header describes properties of the imported graphic. These properties are described by eight 32-bit integer
values, such as the values shown in the following example:

&59a66a95
&00000040
&00000040
&00000001
&00000000
&00000001
&00000000
&00000000

Online manual

ADOBE FRAMEMAKER 7.0 | 261
Framelmage Facet Format

Each value identifies a property of the imported graphic:

¢ The first value is always the constant value 0x59a66a95.

¢ The second value is the width of the graphic in pixels. In the preceding example, the graphic is 64 pixels wide
(converting the hexadecimal value 0x00000040 to the decimal value 64).

¢ The third value is the height of the graphic in pixels. In the example, the graphic is 64 pixels high (converting the
hexadecimal value 0x00000040 to the decimal value 64).

¢ The fourth value is the number of bits used to describe a single pixel. This value is sometimes referred to as the
depth of the graphic. For black and white graphics, only one bit is used to describe a single pixel. For color images,
eight bits are used to describe a single pixel. In the example, the value 0x00000001 indicates that the graphic is in
black and white.

¢ The fifth value is not currently used and is set to 0x00000000 by default.

* The sixth value specifies whether or not the data is encoded. If the data is encoded, this value is set to 0x00000002.
If the data is not encoded (that is, if the data is in uncompressed format), this value is set to 0x00000001. In the
example, the data is uncompressed.

* The seventh value identifies the type of color map used by the graphic. If the graphic is in black and white, no color
map is used, and this value is set to 0x00000000. If the graphic is in color, an RGB color map is used, and this
value is set to 0x00000001 or 0x00000002. In the example, because the graphic is in black and white, the value is
set to 0x00000000.

* The eighth value is the length of the color map in bytes. If the graphic is in black and white, no color map is used,
and this value is set to 0x00000000. If the graphic is in color, a color map with 256 colors is used (described by
768 bytes of information), and this value is set to 0x00000300 (the hexadecimal representation of the number
768). In the example, because the graphic is in black and white, the value 0x00000000 is used.

The Framelmage format is similar to the Sun rasterfile format for bitmap images. The following section of code is
part of the /usr/include/rasterfile.h header file, which describes the Sun rasterfile format:

struct rasterfile {

IntT ras_magic; /* magic number */

IntT ras_width; /* width (pixels) of image */

IntT ras_height; /* height (pixels) of image */

IntT ras_depth; /* depth (1, 8, or 24 bits) of pixel */

IntT ras_length; /* length (bytes) of image */

IntT ras_type; /* type of file; see RT_* below */

IntT ras_maptype; /* type of colormap; see RMT_* below */

IntT ras_maplength; /* length (bytes) of following map */
/* color map follows for ras_maplength bytes, followed by image */
b5

#define RAS_MAGIC 0x59a66a95

/* Sun supported ras_type's */

#define RT_STANDARD 1 /* Raw image in 68000 byte order */
#define RT_BYTE_ENCODED 2 /* Run-length compression of bytes */

/* Sun registered ras_maptype's */

#define RMT_RAW 2
/* Sun supported ras_maptype's */

Online manual

ADOBE FRAMEMAKER 7.0 | 262
Framelmage Facet Format

#define RMT_NONE 0 /* ras_maplength is expected to be 0 */
#define RMT_EQUAL_RGB 1 /* red[ras_maplength/3],green[],blue[] */

For more information, see the /usr/include/rasterfile. h header file and the Sun man pageonrasterfile.

Color map

The optional color map defines colors used for the imported graphic. It consists of 256 bytes of red, followed by 256
bytes of green, followed by 256 bytes of blue. Each byte contains an intensity value for a color. FF is the maximum
intensity and 00 is the minimum (none).

Color 05 = bright red = FF red + 00 green + 00 blue —__

05
array of 256 red levels
‘00 ‘OC ‘AZ ‘OF IFF \CS ‘FG ‘D7 (256 bytes)

Red level = FF |
array of 256 green levels
‘ 0A ‘ A1l ‘ B3 ‘03 ‘ 00 ‘ 0C ‘ E6 ‘ F7 (256 bytes)

Green level = 00 ! |
array of 256 blue levels
‘ FF ‘ EE ‘ AA ‘ 1M }\OO DD ‘ 66 ‘ 77 (256 bytes)

\%

Blue level = 00

The color map defines 256 colors. Each color contains a red, green, and blue level of intensity. The values of the first
red byte, first green byte, and first blue byte define the first color in the map; the values of the second red, green, and
blue bytes define the second color, and so forth.

For example, the data value 05 represents the color defined by the level of red stored in the fifth byte of red, the level
of green stored in the fifth byte of green, and the level of blue stored in the fifth byte of blue. If the fifth byte of red
contains FF (the maximum red intensity) and the fifth bytes of green and blue are both 00, then 05 would represent
bright red.

Data describing the graphic
The data type can be either byte encoded or standard. Each type uses different data formats.

Byte-encoded data

If ras_t ype is RT_BYTE_ENCODED (if the sixth value in the header is 0x00000002), the data is a run-length encoded
pixel matrix. The byte value 80 hexadecimal (decimal 128) is used as a separator for encoding several bytes of the
same color. The encoding scheme uses the following format:

80 nn pp

where nn+1 is the number of times to repeat the data byte (pp).

For example, the following values represent seven data bytes of the hex value 55:

80 06 55

A single pixel value of 80 must be encoded as 80 00 in the data. If the value 80 occurs sequentially, use the format:
80 nn 80

where nn+1 is the number of times 80 occurs.

Online manual

Standard data

ADOBE FRAMEMAKER 7.0 | 263
Framelmage Facet Format

If ras_type is RT_STANDARD (if the sixth value in the header is 0x00000001), the data contains uncompressed hex
data corresponding to the graphic. Each byte is eight pixels for a monochrome graphic or one pixel for color. Each

scanline of data must be padded to a word (16 bit) boundary.

Differences between monochrome and color

There are two types of Framelmage files: monochrome and pseudocolor.

Monochrome images

A monochrome graphic has the following header properties:

Property Value
ras_depth 1
ras_maptype RMT_NONE
ras_maplength 0

An example of the header for a monochrome graphic is shown below:

&59a66a95
&00000040
&00000040
&00000001
&00000000
&00000001
&00000000
&00000000

A monochrome graphic has no color map. Each data byte represents eight pixels, and the most significant bit is the

leftmost pixel.

Graphic data bytes are hex values that represent bit patterns of black and white. For example, hex 55 represents
binary 01010101, which produces a gray shade; hex FF represents binary 11111111, which produces black; and hex

00 represents binary 00000000, which produces white.

Pseudocolor and gray images

A pseudocolor or gray graphic has the following header properties:

Property Value

ras_depth 8

ras_maptype RMT_EQUAL_RGB or RMT_RAW
ras_maplength 300

Online manual

ADOBE FRAMEMAKER 7.0 | 264
Framelmage Facet Format

An example of the header for a color graphic is shown below:

&59a66a95

&00000040

&00000040

&00000008

&00000000

&00000001

&00000002

&00000300

Each graphic data byte represents one pixel of a particular color. The value of a data byte is an index to a color stored
in the color map. (See “Color map” on page 262.)

Sample unencoded Framelmage facet

The sample FrameImage facet in this section describes the following illustration. Note that no color map is included
in the description, because the graphic is in black and white.

Online manual

Header ——

ADOBE FRAMEMAKER 7.0
Framelmage Facet Format

Graphic data

=Framelmage

&%v

&\x

&59a66a95
&00000040
&00000010
&00000001
&00000000
&00000001
&00000000
&00000000
&FFFFFFFFFFFFFFFF
&80000000FFFFFFFF
&80000000FFFFFFFF
&80000000FFFFFFFF
&80000000FFFFFFFF
&80000000FFFFFFFF
&80000000FFFFFFFF
&80000000FFFFFFFF
&FFFFFFFF00000001
&FFFFFFFF00000001
&FFFFFFFF00000001
&FFFFFFFF00000001
&FFFFFFFF00000001
&FFFFFFFF00000001
&FFFFFFFF00000001
&FFFFFFFFFFFFFFFF
&\x

=EndInset

265

Online manual

ADOBE FRAMEMAKER 7.0 | 266
Framelmage Facet Format

Sample encoded Framelmage facet

The sample FrameImage facet in this section describes the same illustration. Note that no color map is included in
the description, because the graphic is in black and white. Unlike the previous file, this graphic file is in encoded
format.

Header —

=Framelmage
&% v

&\x
&59A66A95
&00000040
&00000010
&00000001
&00000000
&00000002
&00000000
&00000000
&8007FF
&8000000000
&8003FF
&8000000000
&8003FF
&8000000000
&8003FF
&8000000000
&8003FF
&8000000000
&8003FF
&8000000000
&8003FF
&8000000000
&8007FF
&00000001

Graphic data —

Online manual

Graphic data

ADOBE FRAMEMAKER 7.0 | 267
Framelmage Facet Format

&8003FF
&00000001
&8003FF
&00000001
&8003FF
&00000001
&8003FF
&00000001
&8003FF
&00000001
&8003FF
&00000001
&8007FF
&\x
=EndInset

Online manual

268

FrameVector Facet Format

FrameVector is a format for vector graphics that is recognized by FrameMaker on all platforms. The specification of
the FrameVector format is documented in this appendix.

Imported graphics can contain graphic data in FrameVector format. This data is called the FrameVector facet of the
graphic. FrameMaker can use this facet to display and print the graphic. For more information about facets, see
, “Facet Formats for Graphics.”

In a MIF file, the FrameVector facet is contained in the | npor t Obj ect statement. For more information about the
statement, see “ImportObject statement” on page 110.

Specification of a FrameVector facet
A FrameVector facet begins with the following facet name, facet data type, and version number lines:

=FrameVector

&%v

&<MakerVector XXX>

In the version number line, XXXis a three-character string identifying the version of FrameMaker. For example,
the character string <MakerVector5.0> identifies an imported graphic created in FrameMaker 5.0.

If the imported graphic is stored in a separate file, the file must include the header string <Maker Vect or Xxx>.

Specification of FrameVector data

A description of a graphic in FrameVector format consists of records. Each record contains the following fields:

* A unique one-byte op code

* A four-byte integer specifying the size of the data

* The actual data

The following figure illustrates the breakdown of a typical record:

One-byte op code Four-byte field describing the size of Actual data of variable length

the data (9 bytes long in this case, as
| specified by the previous field)

1
| 87 00000009 017A0000002D000000 _J

Types and listing of op codes
Each record begins with an op code. The op code can be one of the following three types:
* Definition

* The definition op codes specify the version of the FrameVector graphic and any global information used in the
graphic, such as colors. Any definitions used by the style and object op codes must be specified before these op
codes.

* Style

Online manual

ADOBE FRAMEMAKER 7.0 | 269
FrameVector Facet Format

¢ The style op codes define the styles applied to all operations until the styles are changed. For example, all graphics
objects use the same line width, fill pattern, and color until the style op codes change. All styles need to be defined
before specifying the first object op code.

+ Object
* The object op codes define graphics objects.

The following tables list the op codes, with a brief description of each op code and the number of the page where
each op code is described. The definitions of many of these op codes are similar to corresponding MIF statements.

Definition op codes

Op code Description of op code Location
0x01 Version number page 271
0x02 Bounding rectangle page 271
0x03 CMYK color definition page 272
0x04 RGB color definition page 272
0x05 Pantone color definition page 272
OxFF End of the vector graphics page 272

Note that the colors defined in a FrameVector graphic can be used only within the FrameVector graphic. These colors
cannot be used for other purposes in the document.

If the definition of a color in the FrameVector graphic does not match the definition in the color catalog of the
document, FrameMaker uses the definition in the color catalog when displaying the graphic.

Style op codes
Op code Description of op code Location
0x06 Dashed line style page 273
0x07 Arrow style page 273
0x20 Rotation angle page 274
0x21 Pen pattern page 274
0x22 Fill pattern page 274
0x23 Line width page 274
0x24 Color page 275
0x25 Overprint page 275
0x26 Dashed/solid line page 275
0x27 Head cap style page 275
0x28 Tail cap style page 276
0x29 Smoothed page 276
0x2A Font name page 276
0x2B Font size page 276

Online manual

ADOBE FRAMEMAKER 7.0 | 270
FrameVector Facet Format

Op code Description of op code Location
0x2C Font style page 277
0x2D Font color page 277
0x2E Font weight page 277
O0x2F Fontangle page 278
0x30 Font variation page 278
0x31 Font horizontal kerning page 278
0x32 Font vertical kerning page 278
0x33 Font word spread value page 279
Object op codes
Op code Description of op code Location
0x80 Ellipse page 279
0x81 Polygon page 279
0x82 Polyline page 280
0x83 Rectangle page 280
0x84 Rounded rectangle page 281
0x85 Arc page 281
0x86 Framelmage graphic imported within this graphic page 281
0x87 Beginning of text line page 282
0x88 Text in text line page 282
0x89 End of text line page 283
Ox8A Beginning of clipping rectangle page 283
0x8B End of clipping rectangle page 283
0x8C FrameVector graphic imported within this graphic page 283

Data types used in specifications

The following table lists the data types used for the specifications in this appendix.

Type Definition

byte unsigned 8-bit integer
short unsigned 16-bit integer
long signed 32-bit integer

unsigned long

unsigned 32-bit integer

metric

signed 32-bit, fixed point; the first 16 bits represent the digits preceding the decimal, the last 16 bits rep-

resent the digits following the decimal

Online manual

ADOBE FRAMEMAKER 7.0 | 271
FrameVector Facet Format

Type Definition

string string of characters beginning and ending with a null character; the string is preceded by a short integer
that specifies the length of the string (including the null characters that bracket the string)

point 2 metrics interpreted as the position of the point in x and y coordinates
rectangle 4 metrics interpreted as the position of the rectangle in x and y coordinates and the size of the rectangle
in width and height

All integer values are stored in big endian order.

The x and y coordinates are relative to the rectangle bounding the vector graphics. The origin of the coordinate

system is the upper left corner of this rectangle.

For the specifications of angles, positive values are measured clockwise from 083 (the x-axis), and negative values are

measured counterclockwise.

Specifications of definition op codes

This section describes each definition op code. Op codes are listed by number and description. The op code number

is shown in parentheses.

Version number (0x01)

Specification by data type:

Byte

Description of data:

Bits 7-4: major version number

Bits 3-0: minor version number

Size of data in bytes:

1

Example: 0100000001 50
representing version 5.0
Note: This must be the first op code for a FrameVector graphic.

Bounding rectangle (0x02)

Specification by data type:

Metric, metric, metric, metric

Description of data:

Position of graphic (metric, metric)

Width of graphic (metric)

Height of graphic (metric)

Size of data in bytes:

16

Example:

02 00000010 00000000 00000000 020A0000 00BD0O000O
for a graphic with the following specifications:

x position = 0 points (0000)

y position = 0 points (0000)

width = 522 points (020A)

height = 189 points (00BD)

Note:

This must be the second op code for a FrameVector graphic.

Online manual

CMYK color definition (0x03)

ADOBE FRAMEMAKER 7.0 | 272
FrameVector Facet Format

Specification by data type:

String, metric, metric, metric, metric

Description of data:

Name of color tag (string)

Percentages of cyan, magenta, yellow, and black (metric, metric, metric, metric)

Size of data in bytes:

Variable

Example:

03 0000001B 00 0B 53 61 67 65 20 47 72 65 65 6E 00 00500000 00230000 00320000
00000000

for a color named Sage Green with the following specifications:
cyan = 80% (0050)

magenta = 35% (0023)

yellow = 50% (0032)

black = 0% (0000)

Note:

See “Definition op codes” on page 269 for more information on color definitions.

RGB color definition (0x04)

Specification by data type:

String, metric, metric, metric

Description of data:

Name of color tag (string)

Percentages of red, green, and blue (metric, metric, metric)

Size of data in bytes:

Variable

Example:

03 0000001B 00 0B 53 61 67 65 20 47 72 65 65 6E 00 00280000 00410000 00330000
for a color named Sage Green with the following specifications:

red = 40% (0028)

green = 65% (0041)

blue =51% (0033)

Note:

See “Definition op codes” on page 269 for more information on color definitions.

PANTONE color definition (0x05)

Specification by data type:

String, string

Description of data:

Name of color tag (string)

PANTONE name or number (string)

Size of data in bytes:

Variable

Example: 05 0000001A 00 0B 5361 67 652047 72 65 65 6E 00 00 04 3537 30 00
for a color named Sage Green with the PANTONE number 570
Note: See “Definition op codes” on page 269 for more information on color definitions.

End of the vector graphic (0xFF)

Specification by data type:

N/A

Online manual

ADOBE FRAMEMAKER 7.0
FrameVector Facet Format

Description of data: None

Size of data in bytes: 0

Example: FF 00000000

Note: This must be the last op code for a FrameVector graphic.

Specifications of style op codes

This section describes each style op code. Op codes are listed by number and description. The op code number is

shown in parentheses.

Note that these styles remain in place until another style op code resets the style.

Dashed line style (0x06)

Specification by data type:

Short, metric, ..., metric

Description of data:

Number of dash segments (short)

Length of dash segments in points (metric, ..., metric)

Size of data in bytes:

Variable

Default value:

None (solid)

Example:

06 0000000A 0002 00080000 00060000

for a dashed line with the following specifications:
number of dash segments = 2

dash segment #1 (line segment) = 8.0 points long

dash segment #2 (gap in dashed line) = 6.0 points long

Arrow style (0x07)

Specification by data type:

Byte, byte, byte, byte, metric, metric

Description of data:

Tip angle in degrees (byte — between 5 and 85 degrees)

Base angle in degrees (byte — between 10 and 175 degrees)

Arrow type (byte — 0O:stick, 1:hollow, 2:filled)

Scale the arrow? (byte — 0:no, 1:yes)

Length in points (metric)

Scale factor (metric)

Size of data in bytes:

12

Default value:

default arrow style

273

Online manual

ADOBE FRAMEMAKER 7.0

FrameVector Facet Format

Example:

07 0000000C 10 5A 02 00 000C0000 00004000

for an arrow style with the following specifications:
tip angle =16° (10)

base angle = 90° (5A)

arrow type = filled (02)

arrow scaled? = no (00)

length = 12 points (000C0000)

scale factor = 0.25 (00004000)

Rotation angle (0x20)

Specification by data type:

Metric

Description of data:

Angle in degrees

Size of data in bytes: 4
Default value: 0
Example: 20 00000004 00500000

for the rotation angle of 80°

Pen pattern (0x21)

Specification by data type:

Byte

Description of data:

Index to pen patterns (see “Values for Pen and Fill statements” on page 103)

Size of data in bytes:

1

Default value:

0 (solid)

Example:

2100000001 00

for a solid pen pattern

Fill pattern (0x22)

Specification by data type:

Byte

Description of data:

Index to pen patterns (see “Values for Pen and Fill statements”on page 103)

Size of data in bytes:

1

Default value:

7 (white)

Example: 22 00000001 07
for a white fill pattern
Line width (0x23)
Specification by data type: Metric

Description of data:

Width of line in points

Size of data in bytes:

4

274

Online manual

ADOBE FRAMEMAKER 7.0 | 275
FrameVector Facet Format

Default value: 1 point

Example: 23 00000004 00008000

for the line width of 0.5 point

Color (0x24)
Specification by data type: String
Description of data: Name of color tag
Size of data in bytes: Variable
Default value: Black
Example: 24 00000006 00 06 42 6C 61 63 6B 00
for the color Black
Overprint (0x25)
Specification by data type: Byte
Description of data: Is the object overprinted? (0: no, 1:yes)
Size of data in bytes: 1
Default value: 0 (no)
Example: 2500000001 00

if not overprinted
2500000001 01

if overprinted

Dashed/solid line (0x26)

Specification by data type: Byte

Description of data: Is the line dashed? (0: no, 1:yes)
Size of data in bytes: 1

Default value: 0(no)

Examples: 26 00000001 00

for a solid line
26 00000001 01

for a dashed line

Note: The style of the dashed line is specified by op code 0x06.
Head cap style (0x27)

Specification by data type: Byte

Description of data: Style of head cap or line end (0:arrow, 1:butt, 2:round, 3:square)

Size of data in bytes: 1

Online manual

ADOBE FRAMEMAKER 7.0 | 276
FrameVector Facet Format

Default value:

3 (square)

Example:

27 00000001 00

for arrow style

Tail cap style (0x28)

Specification by data type:

Byte

Description of data:

Style of tail cap or line end (0:arrow, 1:butt, 2:round, 3:square)

Size of data in bytes:

1

Default value:

3 (square)

Example:

2800000001 00

for arrow style

Smoothed (0x29)

Specification by data type:

Byte

Description of data:

Is the object smoothed? (0:no, 1:yes)

Size of data in bytes:

1

Default value:

0 (no)

Example:

2900000001 00
for an unsmoothed object
2900000001 01

for a smoothed object

Font name (0x2A)

Specification by data type:

Byte, string, string, string (some strings not used, depending on flag)

Description of data:

Flag indicating which names are used to identify the font (byte — 0:family name, 1:family
and PostScript name, 2:family and platform name, 3:all three names)

Family name (string)

PostScript name (string)

Platform name (string)

Size of data in bytes:

Variable

Default value:

default font name

Example: 2A 0000000A 00 00 08 43 6F 75 72 69 65 72 00
for a font specified by the family name Courier
Font size (0x2B)
Specification by data type: Metric

Description of data:

Point size of font

Online manual

ADOBE FRAMEMAKER 7.0
FrameVector Facet Format

Size of data in bytes:

4

Default value:

default font size

Example: 2B 00000004 000C0000
for a 12 point font
Font style (0x2C)
Specification by data type: Unsigned long

Description of data:

Described by 14 bits, where bit 0 is the least significant bit:

Bit 0: bold (equivalent to setting the font weight to bold)

Bit 1:italic (equivalent to setting the font angle to italic)

Bits 2-4: underline style — 0:no underline, 1:single, 2:double, 3:numeric (bit 4 is not cur-

rently used)

Bit 5:overline

Bit 6: strikethrough

Bit 7: superscript

Bit 8: subscript

Bit 9: outline

Bit 10: shadow

Bit 11: pair kern

Bits 12-13:case — 0:as is, 1:small caps, 2:lower case, 3:upper case

Size of data in bytes:

4

Default value:

default font style

Example: 2C 00000004 00000043
for a font with bold, italic, and strikethrough styles
Font color (0x2D)
Specification by data type: String

Description of data:

Name of color tag

Size of data in bytes:

Variable

Default value:

Black

Example:

03 0000001B 00 0B 53 61 67 65 20 47 72 65 65 6E 00

for a font in the color Sage Green

Font weight (0x2E)

Specification by data type:

String

Description of data:

Name of font weight type (uses the same values as the MIF F\\&i ght statement)

Size of data in bytes:

Variable

277

Online manual

ADOBE FRAMEMAKER 7.0 | 278
FrameVector Facet Format

Default value:

default font weight

Example: 2E 00000008 00 08 52 65 67 75 6C 61 72 00
for the font weight Regular
Font angle (0x2F)
Specification by data type: String

Description of data:

Name of font angle type (uses the same values as the MIF FAngl e statement)

Size of data in bytes:

Variable

Default value:

default font angle

Example:

2F 00000008 00 08 52 65 67 75 6C 61 72 00

for the font angle Regular

Font variation (0x30)

Specification by data type:

String

Description of data:

Name of font variation type (uses the same values as the MIF FVar statement)

Size of data in bytes:

Variable

Default value:

default font variation

Example:

30 00000008 00 08 52 65 67 75 6C 61 72 00

for the font variation Regular

Font horizontal kerning (0x31)

Specification by data type:

Metric

Description of data:

Horizontal kerning in percentage on an em (a positive value moves characters to the right,
a negative value moves characters to the left)

Size of data in bytes:

4

Default value:

default horizontal kerning

Example:

3100000004 00008000
for a font kerning of 50% of an em to the right (0.50)
3100000004 FFFF8000

for a font kerning of 50% of an em to the left (-0.50)

Font vertical kerning (0x32)

Specification by data type:

Metric

Description of data:

Vertical kerning in percentage of an em (a positive value moves characters downward, a
negative value moves characters upward)

Size of data in bytes:

4

Default value:

default vertical kerning

Online manual

ADOBE FRAMEMAKER 7.0 | 279
FrameVector Facet Format

Example: 3200000004 00008000
for a font kerning of 50% of an em downward (0.50)
3200000004 FFFF8000

for a font kerning of 50% of an em upward (-0.50)

Font word spread value (0x33)

Specification by data type: Metric

Description of data: Percentage of spread
Size of data in bytes: 4

Default value: default word spread
Example: 33 00000004 00008000

for a word spread of 50% (0.50)
3300000004 FFFF8000

for a word spread of -50% (-0.50)

Specifications of object op codes

This section describes each object op code. Op codes are listed by number and description. The op code number is

shown in parentheses.

Ellipse (0x80)

for an ellipse with the following specifications:
x position = 306 points (0132)

y position = 36 points (0024)

width = 126 points (007E)

height = 126 points (007E)

Specification by data type: Rectangle

Description of data: Position and size of ellipse in points

Size of data in bytes: 16

Example: 8000000010 01320000 00240000 007E0000 007E0000

Polygon (0x81)
Specification by data type: Long, point, ..., point
Description of data: Number of points (long)
Position of each point in points (point, ..., point)
Size of data in bytes: Variable

Online manual

ADOBE FRAMEMAKER 7.0
FrameVector Facet Format

Example:

8100000010 00000003 01320000 002E0000 01100000 007E0000 01680000 007D0000

for a polygon with the following specifications:
number of points =3

x position of point #1 = 306 points (0132)

y position of point #1 = 46 points (002E)

X position of point #2 = 272 points (0110)

y position of point #2 = 126 points (007E)

x position of point #3 = 360 points (0168)

y position of point #3 = 125 points (007D)

Note:

When smoothed style is on, this object is a closed Bezier curve.

Polyline (0x82)

Specification by data type:

Long, point, .., point

Description of data:

Number of points (long)

Position of each point in points (point, ..., point)

Size of data in bytes:

Variable

Example:

82 0000000C 00000002 00120000 00360000 00FC0000 003F0000

for a polyline with the following specifications:
number of points = 2 (00000002)

point #1,x position = 18 points (0012)

point #1,y position = 54 points (0036)

point #2,x position = 252 points (00FC)

point #2,y position = 63 points (003F)

Note:

When smoothed style is on, this object becomes a Bezier curve.

Rectangle (0x83)

Specification by data type:

Rectangle

Description of data:

Position and size of rectangle in points

Size of data in bytes:

166

Example:

83 00000010 00670000 004F0000 00130000 003C0000
for a rectangle with the following specifications:

x position = 103 points (0067)

y position = 79 points (004F)

width = 19 points (0013)

height = 60 points (003C)

280

Online manual

Rounded rectangle (0x84)

ADOBE FRAMEMAKER 7.0 | 281
FrameVector Facet Format

Specification by data type:

Metric, rectangle

Description of data:

Radius of corners in points (metric)

Position and size of rectangle in points (rectangle)

Size of data in bytes:

20

Example:

8400000014 00120000 007E0000 007E0000 00630000 00240000
for a rounded rectangle with the following specifications:

radius of corners = 18 points (0012)

X position = 126 points (007E)

y position = 126 points (007E)

width = 99 points (0063)

height = 36 points (0024)

Arc (0x85)

Specification by data type:

Rectangle, metric, metric

Description of data:

Position and size of arc in points (rectangle)

Start angle in degrees (metric)

Length of arcin degrees, where positive values correspond to clockwise arcs and negative
values correspond to counterclockwise arcs (metric)

Size of data in bytes:

24

Example:

85 00000018 00490000 00270000 007C0000 008CO000 00000000 005A0000
for an arc with the following specifications:

X position = 73 points (0049)

y position = 39 points (0027)

width = 124 points (007C)

height = 140 points (008C)

startangle=0"

arc angle length =90°

Framelmage graphic imported within this graphic (0x86)

Specification by data type:

Rectangle, byte, bitmap

Description of data:

Position and size of the bounding rectangle in points (rectangle)

Is the object flipped left/right? (byte — 0:no, 1:yes)

Framelmage data (bitmap)

Size of data in bytes:

Variable

Online manual

ADOBE FRAMEMAKER 7.0 | 282
FrameVector Facet Format

Example:

86 00000035 00F20000 00740000 00080000 00080000 00
59A66A95

00000008

00000008

00000001

00000000

00000002

00000000

00000000

80 OE FF

20

for an imported bitmap graphic of a black square with the following specifications:
X position = 242 points

y position = 116 points

width = 8 points

height = 8 points

flipped left/right = no

Note:

The bitmap is scaled to the size of the bounding rectangle.

Beginning of text line (0x87)

Specification by data type:

Point, byte

Description of data:

Baseline origin of the text line in points (point)

Text line alignment (byte — 0O:left, 1:center, 2:right)

Size of data in bytes:

9

Example:

87 00000009 017A0000 002D0000 00

for a text line with the following specifications:
X position = 378 points (017A)

y position = 45 points (002D)

alignment = left

Note:

The specification of the start of a text line begins with op code 87 and can contain combi-
nations of fonts and text. A text line must end with op code 89.

Text in text line (0x88)

Specification by data type:

String

Description of data:

Actual text written in text line

Size of data in bytes:

Variable

Example:

88 00000005 0005 74 65 78 74 00

for the text line “text”

Online manual

End of text line (0x89)

ADOBE FRAMEMAKER 7.0 | 283
FrameVector Facet Format

Specification by data type: N/A
Description of data: None

Size of data in bytes: 0

Example: 89 00000000

Beginning of clipping rectangle (0x8A)

Specification by data type:

Rectangle

Description of data:

Position and size of clipping rectangle in points

Size of data in bytes:

16

Example:

8A 00000010 00670000 004F0000 00130000 003C0000
for a clipping rectangle with the following specifications:
x position = 103 points (0067)

y position = 79 points (004F)

width = 19 points (0013)

height = 60 points (003C)

Note:

Clipping rectangles are unique to the FrameVector format. All objects within a clipping
rectangle are drawn to the boundaries of the rectangle. If an object extends beyond this
region, the portion that passes the rectangle boundary is not drawn.

The specification of the start of a clipping rectangle begins with op code 8A and ends with
op code 8B.All objects within the clipping rectangle must be specified between these two
op codes.

End of clipping rectangle (0x8B)

Specification by data type: N/A
Description of data: None

Size of data in bytes: 0

Example: 8B 00000000

FrameVector graphic imported within this graphic (0x8C)

Specification by data type:

Rectangle, byte, vector data

Description of data:

Position and size of the bounding rectangle in points (rectangle)

Is the object flipped left/right? (byte — 0:no, 1:yes)

FrameVector data (vector data)

Size of data in bytes:

Variable

Online manual

ADOBE FRAMEMAKER 7.0 | 284
FrameVector Facet Format

Example: 8C 00000046 00670000 004FO000 00130000 003C0000 00
...(FrameVector data)...
for a FrameVector graphic with the following specifications:
X position = 103 points (0067)
y position = 79 points (004F)
width = 19 points (0013)
height = 60 points (003C)

flipped left/right = no

Note: The vector graphic is scaled to the size of the bounding rectangle.

Sample FrameVector facet

The sample FrameVector facet in this section describes the following illustration:

FRAMEVECTOR G RAPHIC

This illustration is composed of the following graphic objects:

* A rectangle with no border and a gray fill

* A polygon defined by three points, a black border, and no fill
* A rectangle with a black border and a white fill

* A text line with the text “FrameVector Graphic” in small caps
* A polyline defined by two points and an arrow style head

* An arc with a black border and no fill

The following sample facet describes this graphic.

=FrameVector

&%V

&<MakerVector5.0>

&\x

&010000000150
&020000001000000000000000000168000000D80000
&230000000400008000

&21000000010F

&24000000080006426C61636B00

&260000000100

&220000000104

&200000000400000000
&8300000010007A00000052000000C0000000190000
&210000000100

Online manual

ADOBE FRAMEMAKER 7.0
FrameVector Facet Format

&220000000107
&810000001C00000003000E0000004100000029000000710000004C000000410000
&830000001000720000004A000000C0000000190000
&8700000009007B0000005C000000
&2A0000000C00000A\xHelvetica\x00
&2B0000000400090000
&300000000A0008526567756C617200
&2F0000000A0008526567756C617200
&2E0000000A0008526567756C617200
&330000000400008000

&2C0000000400001000

&88000000160014\xFrameVector Graphic\x00

&8900000000

&070000000C10780201000C00000004000

&270000000100
&82000000140000000200720000005500000033000000550000
&22000000010F

&270000000103
&850000001800040000002B0000002F0000002C0000005A0000005A0000
&FF00000000

&\x

=EndInset

The following sections explain the syntax used to describe this facet.

Definition op codes for the FrameVector graphic

The example begins with the ASCII string <Maker Vect or 5. 0>. The\ x characters indicate that the data that follows
is in hexadecimal format.

The following lines specify the FrameVector version (5.0) and the size (5" x 3", or 360 points by 216 points) and
position (0,0) of the FrameVector graphic:

&010000000150
&020000001000000000000000000168000000D80000

Since colors are not used in this example, the color op codes are not specified.

Specification of the rectangle shadow

The drop shadow of the rectangle is drawn first, since it appears behind the other graphic objects. The rectangle has
the following specifications:

¢ The line width is 0.5 point.

&230000000400008000
* The pen pattern is none (0F).

&21000000010F
» The color is black.

&24000000080006426C61636B00
e The line is solid (not dashed).

&260000000100

285

Online manual

ADOBE FRAMEMAKER 7.0 | 286
FrameVector Facet Format

¢ The fill pattern is grey (04).

&220000000104
¢ The rotation angle is 0°.

&200000000400000000
* The position of the rectangle is (122 points, 82 points).

&8300000010007A000000520000
* The size of the rectangle is 192 points by 25 points.

00C0000000190000

Specification of the polygon

The polygon in this example has the following specifications:

* The pen pattern is solid (00).

&210000000100
¢ The fill pattern is white (07).

&220000000107
* The polygon has three points.

&810000001C00000003
* The positions of the three points are (15 points, 65 points), (41 points, 113 points), and (76 points, 65 points).

000E0000004100000029000000710000004C000000410000
The rest of the styles are inherited from the previous object.

Specification of the rectangle

The white rectangle in this example has the following specifications:

* The position of the rectangle is (114 points, 74pt).

&830000001000720000004A0000
* The size of the rectangle is 192 points by 25 points.

00C0000000190000
The rest of the styles are inherited from previous objects.

Specification of the text line

The text line in this example has the following specifications:

* The position of the text line is (123 points, 92 points), and the text line is left-aligned.

&8700000009007B0000005C000000

* The text line uses the Helvetica font.
&2A0000000C00000A\xHelvetica\x00
¢ The text line uses a 9-point font.
&2B0000000400090000

¢ The font variation is Regular.

&300000000A0008526567756C617200
¢ The font angle is Regular.

Online manual

ADOBE FRAMEMAKER 7.0 | 287
FrameVector Facet Format

&2F0000000A0008526567756C617200
* The font weight is Regular.

&2E0000000A0008526567756C617200

* The font word spread value is 50%.

&330000000400008000
* The font style is Small Caps.

&2C0000000400001000
¢ The text in the text line is "FrameVector Graphic."

&88000000160014\xFrameVector Graphic\x00
The rest of the styles are inherited from previous objects.

The following record specifies the end of the text line:

&8900000000

Specification of the polyline

The polyline in this example has the following specifications:

* The arrow style has a tip angle of 16° and a base angle of 120°.

&070000000C1078
* The arrow style is defined so that the arrow is filled and is scaled as it gets wider. The length of the arrow is 12
points. If the line is widened, the arrow head also is widened by a corresponding factor of 0.25.

0201000C00000004000
* The style of the head cap of the polyline is arrow.

&270000000100

* The polyline consists of two points.

&820000001400000002
* The positions of the two points are (114 points, 85 points) and (51 points, 85 points).

00720000005500000033000000550000

The rest of the styles are inherited from previous objects.

Specification of the arc

The arc in this example has the following specifications:

¢ The fill pattern of the arc is none (0OF).

&22000000010F

* The style of the head cap of the arc is square.

&270000000103

¢ The position of the arc is (4 points, 43 points).
&850000001800040000002B0000

* The size of the arc is 43 points by 40 points.
002F0000002C0000

* The start angle of the arc is 90°, and the arc angle length is 90°.

005A0000005A0000

Online manual

ADOBE FRAMEMAKER 7.0 | 288
FrameVector Facet Format

The rest of the styles are inherited from previous objects.

Specification of the end of the FrameVector graphic

The following record specifies the end of the FrameVector graphic:

&FF00000000
The \ x characters specify the end of data in hexadecimal format.

Online manual

Index

Symbols

(number sign) 55

&%i 110

&%m 110

&%v 110

&\x 110

' (straight quotation mark) 5
< (left angle bracket) 5
=facet_name 110

> (right angle bracket) 5

\ (backslash), using for special
characters 7

* (left quotation mark) 5

A

abs 186

acmut 189

acos 186

acosh 186

acot 186

acoth 186

acsc 186

acsch 186

adding pages 99

AFrame 122

alignment
anchored frame 109
equation 178
paragraph in cell 71
paragraph in text column 59
table 69

Alsolnsert 145

AnchorAlign 107

AnchorBeside 108

anchored frames
alignment 109

position 108

Angle 102

in Math 177
angle

in MathFullForm 186
angle brackets (< >) 5
approx 190
ArcDTheta 106
ArcRect 106
ArcTheta 106
arg 186
ArrowStyle

in Arc 105

in PolyLine 116
asec 186
asech 186
Asian character encoding 198
AsianSpace 205
asin 186
asinh 186
ast 186
atan 186
atanh 186
ATbl 122

atomic expressions in
equations 181-186

atop 190

Attribute 162

AttributeDisplay 162

Attributes 166

AttrName 162

AttrValue 162

autonumber of a paragraph
inatable 69

AutoNumSeries 98

B
backslash (\), using for special
characters 7

bar chart example 217
BaseAngle 106
BaseCharWithRuby 205
BaseCharWithSuper 205
baselines, synchronizing 119
BAttrEditor 169
BAttributeDisplay 169
BCustomElementList 168
BDisplayText 138
BegParentheses 205
BElementCatalogScope 168
BFCLMaximums 169
BFCLMinimums 169
BFNoteLabels string> 141

BFNoteNumComputeMethod 141

BFNoteNumStartNum 141
BENoteNumStyle 141
BFNoteRestart 141

bigcap 192

bigcup 192

binary operators in equations 189

BitMapDpi 110, 111

bitmaps, imported 111

bket 189

BLOffset 107

body pages, adding 33, 99

Book 136

book files 135-143
chapter numbering in 140
identification line 136
page numbering in 140
paragraph numbering in 141

sections 135

289

volume numbering 139
book properties

File Info data 137
BookComponent 170

in document files 97
BookElements 170
BookFileInfo 137
BookSettings 168
BookUpdateReferences 143
borders, displaying 86, 93
box 186
box2 187
boxdot 187
bra 187
BRect 246
BSeparatelnclusions 169
BSGMLAppName 169
BTblFNoteLabels 142

BTblFNoteNumComputeMethod 1
42

BTbIFNoteNumStyle 142
bullet 189
BUselnitStructure 169
BViewOnly 138
BViewOnlyNoOp 138
BViewOnlyWinBorders 138
BViewOnlyWinMenubar 138
BViewOnlyWinPopup 138
BXmlDocType 164
BXmlEncoding 137, 164
BXmlFileEncoding 164
BXmlPublicld 164
BXmlStandAlone 138, 164
BXmlStyleSheet 138, 164
BXmlUseBOM 164
BXmlVersion 137, 164
BXmIWellFormed 164

byte encoded data, in FrameImage
file 262

C
cap 190
Catalogs
Character 62-68
Color 77-79
Element 161-162
Paragraph 58-62
Table 68-76
CColor 57
cdot 190
ceil 187
Cell 75
in Row 74
CellAffectsColumnWidthA
in Cell 75
in determining table width 76
CellAngle 75
CellBRuling 75
CellColor 75
CellColumns 75
CellContent 75
CellLRuling 75
CellRows 75
CellRRuling 75
cells
contents 75
fill pattern, default 75
margins 69
rotation 75
ruling style 75
straddling columns/rows 75
CellSeparation 75, 245
CellTRuling 75
CenteredPunct 205
CGM files
imported 111
change 187
change bars, properties 86, 93
chapter numbering in a book 140

ChapterNumComputeMethod 90,
140

ChapterNumStart 90, 140
ChapterNumStyle 90, 140
ChapterNumText 90, 140
Char 123

in ParaLine 122

in TextLine 118
char

in MathFullForm 182
Character Catalog 62-68

character format properties

language used for spell-checking
and hyphenation 64

character formats
creating and applying 21
inheriting format properties 22
character set 7
character spread 65, 158
characters in equations 182
CharClass 205
CharUnits 54
chem 194
choice 189
cmut 189
Collapsed 161
Color 78
in ColorCatalog 78
color
for body cells 70
for cells 75

for characters 64, 157

for exception columns and body
rows 70

for heading and footing cells 70
for objects 103

color map, in Framelmage file 262

color, custom 77

ColorAttribute 79

ColorBlack 78

ColorCatalog 78

ColorCyan 78

ColorLibraryFamilyName 78

290

ColorLibraryInkName 78
ColorMagenta 78
ColorOverprint 79
ColorTag 78
ColorTint 79
ColorTintBaseColor 79
ColorYellow 78
ColumnGap 100
Columns 100
columns, in a table
body cell paragraph format 71
footing cell paragraph format 71
heading cell paragraph format 71
number 73
width 73
columns, text
default number per page 84, 89
Combined fonts 199

CombinedFontAllowBaseFamilyBold
edAndObliqued 200

CombinedFontBaseEncoding 200
CombinedFontBaseFamily 199
CombinedFontCatalog 199
CombinedFontDefn 199
CombinedFontName 199
CombinedFontWesternFamily 200
CombinedFontWesternShift 200
CombinedFontWesternSize 200
comma 190
Comment 55
Condition 57
condition tags

creating and applying 40-43

syntax 57
Conditional 57

in ParaLine 122

in Row 74
conditional rows in a table 74

conditional text, showing/hiding 85,
91

ConditionCatalog 57

cong 190

Context 152

ContextFormatRule 151, 154

ContextLabel 154

ContPageNum 91, 140

Corel Draw files
imported 111

cos 187

cosh 187

cot 187

coth 187

CountElement 152

CountElements 152

Cropped 108

cross 189

cross-references 126
automatically active 46
creating 36

csc 187

csch 187

CSeparation 57, 244

CState 57

CStyle 57

CTag 57

cup 190

curl 187

current state of an object 3

D
DAcrobatBookmarksIncludeTagNa
mes 88, 95

dagger 187
dangle 187

DApplyFormatRules 165
dashed lines

custom 222
DashedPattern 102
DashedStyle 102
DashSegment 102
database publishing 49

example of 227
DataLink 134, 243
DataLinkEnd 134, 243
DAttrEditor 165
DAttributeDisplay 165
DAutoChBars 86, 93
DBookElementHierarchy 166
DBordersOn 86, 93
DChBarColor 86, 93
DChBarGap 86, 93
DChBarPosition 86, 93
DChBarSeparation 245
DChBarWidth 86, 93
DCollateSeparations 246
DColumnGap 84, 89
DColumns 84, 89
DCurrentView 87, 93
DCustomElementList 165
DDisplayOverrides 85, 91
DefaultApply 142
DefaultDerive 142
DefaultPrint 142
defaults

document properties 82-97

hyphenation and spell-checking
language 87, 94

MIF 3
page margins 83, 89
paragraph formats, in cells 71
punctuation for run-in heads 60
ruling, in a table 69
shading, in a table 70
units 54
define 55
DElementBordersOn 165
DElementCatalogScope 165
DElementTags 165
DeriveLinks 98, 139
DeriveTag 98, 139
DeriveType 98, 139

291

DExclusions 165
DFCLMaximums 166
DFCLMinimums 167
DFNoteAnchorPos 85, 92
DFNoteAnchorPrefix 85, 92
DFNoteAnchorSuffix 85, 92
DFNoteLabels 85, 92
DFNoteMaxH 85, 91
DFNoteNumberPos 85, 92
DFNoteNumberPrefix 85, 92
DFNoteNumberSuffix 85, 92
DFNoteNumComputeMethod 92
DFNoteNumStyle 85, 92
DFNoteRestart 85, 91
DFNoteTag 85, 91
DFrozenPages 84, 91
DFullRulers 86, 93
DGenerateAcrobatInfo 88, 95
DGraphicsOff 86, 93
DGridOn 86, 93

diacritical 185

Dictionary 99

diff 187

DInclusions 165

div 189

diver 187

DLanguage 87, 94
DLinebreakChars 84, 91
DLinkBoundariesOn 87, 93
DLOut 134
DLParentFormats 243
DLSource 134, 243
DMagicMarker 89, 97
DMargins 83, 89
DMathCatalog 174
DMathFunctions 174
DMathGreek 174
DMathGreekOverrides 174
DMathltalicFunctionName 245
DMathltalicOtherText 245

DMathLargeHoriz 174
DMathLargelntegral 173
DMathLargeLevell 173
DMathLargeLevel2 173
DMathLargeLevel3 173
DMathLargeSigma 173
DMathLargeVert 174
DMathMediumHoriz 173
DMathMediumIntegral 173
DMathMediumLevell 173
DMathMediumLevel2 173
DMathMediumLevel3 173
DMathMediumSigma 173
DMathMediumVert 174
DMathNew 174
DMathNewType 175
DMathNumbers 174
DMathOpName 174, 175
DMathOpOverrides 174
DMathOpPositionA 174, 175
DMathOpPositionB 174, 175
DMathOpPositionC 174, 175
DMathOpTLineOverride 174, 175
DMathShowCustom 174
DMathSmallHoriz 173
DMathSmalllntegral 173
DMathSmallLevell 173
DMathSmallLevel2 173
DMathSmallLevel3 173
DMathSmallSigma 173
DMathSmallVert 174
DMathStrings 174
DMathVariables 174
DMaxlInterLine 242
DMaxInterPgf 242
DMenuBar 88, 97
DNarrowRubiSpaceForJapanese 213
DNarrowRubiSpaceForOther 213
DNextUnique 83, 89
DNoPrintSepColor 87, 94

DocFileInfo 97
Document 83, 89, 164
document files 52
MIF sections of 52
document properties 82-97
Acrobat preferences 88, 95
change bars 86, 93

document-specific menu bars 88,
97

footnotes 85, 91

graphics display, turning on and
off 86, 93

hyphenation and spell-checking
language, default 87, 94

line breaks 84, 91
margins 83, 89

number of text columns per
page 84, 89

page numbering 84, 90
page size 84, 89
references 88, 95

showing/hiding conditional
text 85, 91

small caps 88, 94
Smart Quotes 84, 91
Smart Spaces 84, 91
subscript/superscript 88, 94
two-sided layout 84, 91
view options 86, 93
document window
customizing 45
placement of 83, 89
downbrace 187
DPageGrid 86, 93
DPageNumStyle 84, 90
DPagePointStyle 84, 90
DPageRounding 84, 91
DPageScrolling 87, 93
DPageSize 84, 89
DParity 84, 91
DPDFAIlINamedDestinations 95

292

DPDFAllPages 95
DPDFBookmarks 95
DPDFConvertCMYK 95
DPDFDestsMarked 95
DPDFEndPage 95
DPDFJobOptions 95
DPDFOpenBookmarkLevel 95
DPDFOpenFit 95
DPDFOpenPage 95
DPDFOpenZoom 95
DPDFPageHeight 95
DPDFPageSizeSet 96
DPDFPageWidth 96
DPDFRegMarks 96
DPDFSaveSeparate 96
DPDFStartPage 96
DPDEFStructure 96
DPDFStructureDefined 96
DPrintProcessColor 87, 94
DPrintSeparations 87, 94
DPrintSkipBlankPages 88, 94
DPunctuationChars 85, 91
DRubiAlignAtBounds 213
DRubiFixedSize 213
DRubiOverhang 213
DRubiSize 213
DRulersOn 86, 93
DSeparatelnclusions 165
DSGMLAppName 165
DShowAllConditions 85, 91
DSmallCapsSize 88, 94
DSmallCapsStretch 88, 95
DSmartQuotesOn 84, 91
DSmartSpacesOn 84, 91
DSnapGrid 86, 93
DSnapRotation 86, 93
DStartPage 84, 90
DSubscriptShift 88, 94
DSubscriptSize 88, 94
DSubscriptStretch 88, 94

DSuperscriptShift 88, 94
DSuperscriptSize 88, 94
DSuperscriptStretch 88, 94
DSymbolsOn 86, 93
DTbIFNoteAnchorPos 86, 92
DTblFNoteAnchorPrefix 86, 92
DTblFNoteAnchorSuffix 86, 92
DTbIFNoteLabels 86, 92
DTbIFNoteNumberPos 86, 92
DTbIFNoteNumberPrefix 86, 92
DTblFNoteNumberSuffix 86, 92
DTbIFNoteNumStyle 86, 92
DTblFNoteTag 86, 92

DTrapwiseCompatibility 87, 94,
239

DTwoSides 84, 91
dummy 185
DUpdateDataLinksOnOpen 242
DUpdateTextInsetsOnOpen 88, 95
DUpdateXRefsOnOpen 88, 95
DUselnitStructure 165
DViewOnly 87, 93
DViewOnlyNoOp 87, 94
DViewOnlySelect 46, 87, 94, 241
DViewOnlyWinBorders 87, 94
DViewOnlyWinMenubar 87, 94
DViewOnlyWinPalette 87, 94
DViewOnlyWinPopup 87, 94
DViewOnlyXRef 87, 93
DViewRect 83, 89
DViewScale 83, 89
DVoMenuBar 88, 97
DWideRubiSpaceForJapanese 213
DWideRubiSpaceForOther 213
DWindowRect 83, 89
DXEF files

imported 111
DXmlDocType 164
DXmlEncoding 164
DXmlFileEncoding 164

293

DXmlPublicld 164
DXmlStandAlone 164
DXmlStyleSheet 164
DXmlSystemlId 164
DXmlUseBOM 164
DXmlVersion 164
DXmlWellFormed 164

E

EComponent 170
EDAlsolnsert 145
EDAttrChoice 148
EDAttrChoices 148
EDAttrDef 146, 147
EDAttrDefinitions 146
EDAttrDefValue 148
EDAttrDefValues 148
EDAttrHidden 148
EDAttrName 147
EDAttrRange 148
EDAttrReadOnly 148
EDAttrRequired 148
EDAttrType 147
EDComments 146
EDEndElementRules 151
EDExclusions 145
EDGeneralRule 145
EDInclusions 145
EDInitialTablePattern 146
EDObject 145
EDObjectFormatRules 149
EDPgfFormat 146
EDPrefixRules 150
EDStartElementRules 150
EDSuffixRules 146
EDTag 145, 165, 168
EDTextFormatRules 149
EDTSuffixRules 150
EDValidHighestLevel 145
Element 166, 170

element properties

general rule 145

highest level element 145

inclusions/exclusions 145

object type 145

tag 145
ElementBegin 161
ElementContext 166
ElementDef 145
ElementDefCatalog 144
ElementEnd 162
ElementPrefix 154
ElementReferenced 161

elements 161

marking in document 161, 163

ElementSuffix 154
Else 152
Elself 153
ENamespace 161, 162
ENameSpacePath 162
ENamespacePrefix 162
EndInset 110
EndParentheses 205
EPS files

imported 111
EPSI format 258

equal 190
EqualizeWidths

in determining table width 76

inTbl 73
equations 173-197

alignment 178

atomic expressions in 181-186

binary operators in 189
characters in 182
indicesin 194

large operators in 192
matrices in 196

N-ary operatorsin 190

numbers in 181

operatorsin 186-196

optional operands in 193

rotation 177
samples of 179, 197
size 178
strings in 182
unary operators in 186
equiv 190
error messages 234-236
ETag 161, 166, 170
ETextSnippet 170
Exclusion 145
exists 187

exp 187

F

facets
defined 110
EPSI 258
Framelmage 260
FrameVector 268
fact 187
FAngle 63, 157
FBold 65
FCase 65, 158
FChangeBar 65, 158
FclPgfCatalogRef 155
FclTag 155
fcodes 47
FColor 64, 157
FCombinedFontName 201
FDoubleUnderline 245
FDW 65, 158, 166, 169
FDWChange 158
FDX 65, 158
FDY 65, 158
feathering 119, 120
FEncoding 64, 201
FFamily 63, 157
FileName 97, 139

FileNameSuffix 97, 139
Fill 103

in Frame 102

in objects 102
fill pattern

default for body cells 70

default for heading/footing
rows 70

for cells 75

for exception columns in a
table 70

for objects 102

index 103
filters

import 48

output 48

record of 113, 128
Fltalic 65
FLanguage 64
FlipLR 110
Float 107
FLocked 65, 131, 158
floor 187
flows, text 119-125

HIDDEN 121
FlowTag 98
FmtChangeList 154, 155
FmtChangeListCatalog 155
FmtChangeListTag 154
FNote

in Notes 120

in ParaLine 122
FNoteStartNum 85, 91
FNumericUnderline 245
Font 63

in FontCatalog 63

in Notes 120

in ParaLine 122, 126

in TextLine 118
FontCatalog 63
FooterC 100

294

FooterL 100
FooterR 100
footnotes

in cells 75

in table titles 73

properties, in document text 85,
91

properties, in tables 86, 92
forall 187
format rules 148
formats

Framelmage 258
FormatTag 154
FOutline 65, 158
FOverline 64, 158
FPairKern 65, 158
FPlain 65
FPlatformName 63, 157
FPosition 65, 158
FPostScriptName 63, 157
fract 189
Frame

in AFrames 105

in Frame 108

in Page 100
Framelmage format 260

color 263

example 264, 266

gray 263

monochrome 263
frames

reference 61
FrameType 107
FrameVector

example 284

format 268
FSeparation 64, 157, 244
FShadow 65, 158
FSize 64, 157, 166
FSizeChange 157
FStretch 64, 157

FStretchChange 157
FStrike 64, 158

FSubScript 246

FSupScript 246

FTag 63

FTsume 65

function 189

FUnderline 245
FUnderlining 64, 158

Fvar 63, 157

FWeight 63, 157
FWesternPlatformName 201
FWesternPostScriptName 201

G
GEM files

imported 111
General XML information 137, 164
generic object data 101
geq 190
gg 191
GIF files
imported 111
grad 193

graphic frames

type 107

graphics
bitmap 111
imported 110
object-oriented 111
raster 111
vector 111

graphics objects 101-119

graphics, turning display on or
off 86, 93

greaterthan 191

grid 86, 93
snap 86, 93
visible 86, 93

GroupID 102

H
HeadCap

in Arc 105
in PolyLine 116
header, in FrameImage file 260
HeaderC 100
HeaderL 100
HeaderR 100
HeadType 106
height, row 74
HFFont 100
HFMargins 100
hidden page, for conditional text 99
Hiragana 205
HPGL files
imported 111

hypertext documents, setting View
Only options 45

hypertext links, automatically
generated 98, 139

hyphenation language
default for document 87, 94
in paragraphs 64
HyphenMaxLines 60, 159
HyphenMinPrefix 60, 159
HyphenMinSuffix 60, 159
HyphenMinWord 60, 159

|
ID

in Frame 103
in Group 109
in Notes 120
in objects 102
id
in MathFullForm 187
If 152
IGES files
imported 111
imag 188
import filters 48

imported graphics 110

295

imported objects 110-115
graphic file formats 111
pathname syntax 113
record of filter used 113
size 111

imported text 127

ImportHint 110

importing MIF files 9

ImportObEditor 110

ImportObFile 110, 113

ImportObFileDI 110, 113

ImportObFixedSize 110

ImportObject 110-115

ImportObUpdater 111

in 191

include 56

Inclusion 145

InCondition 58
in Row 74

indents
paragraph 59
table 68

indexes 194

indexes for pen and fill patterns 103

indices in equations 194

inheritance
of character format properties 22
of paragraph format properties 20

InitialAutoNums 98

inprod 189

int 192

IsTextRange 154

J
jotdot 191

K
ket 188
Key 96, 137

Klanguage 204

Kumihan 204
Kumihan tables 202-212
KumihanCatalog 204

L
landscape pages 247

language used for spell-checking and
hyphenation

default for document 87, 94
in paragraphs and characters 64

lap 188

large operators in equations 192

leading, of a paragraph 59

left angle bracket (<) 5

left quotation mark (*) 5

Leftarrow 191

leftarrow 191

Length 106

leq 191

lessthan 191

letter spacing 65

Level 153

LevelFormatRule 152, 154

lim 189

line breaks 84, 91

list 191

I 191

In 188

locking a document 87, 93, 138

log 193

lparen 188

LRarrow 191

Irarrow 191

M

MacEdition 134, 243

MacPaint files
imported 111

macros 55

margins

cell 69

296

page, defaults 83, 89
Marker 123

in ParaLine 122
markers 36, 123
MarkerTypeCatalog 124

markup statements, data item
conventions 5

master pages
creating 33
syntax 99
math, statements for 173-197
MathAlignment 178
MathFullForm 178-197
in Math 178
MathLineBreak 178
MathOrigin 178
MathSize 178
matrices in equations 196
matrix 196
MCurrPage 125
messages 234-236
Micrografx Drawing Format files
imported 111
MIF 52
defaults 3
definition of 1
samples of 197, 216-227
MIF book files 135-143
identification line 136
sections 135
MIF document files
sections 52
MIF files
debugging 50
editing 10
importing into a FrameMaker
document 9

layout 11
opening and saving 9
MIFFile 53

minus 188

MoveTabs 157

mp 188

MText 125

MType 125
MTypeName 124, 125

N
N-ary operators in equations 190
NativeOrigin 110
neg 188
newdelimiter 196
newfunction 196
newinfix 196
newlarge 196
newlimit 196
newpostfix 196
newprefix 196
newvlist 196
NextElement 166
ni 191
NoLineBeginChar 205
NonSeperableChar 205
norm 188
notequal 191
Notes
in Cell 75
inTbl 73
in TextFlow 120
notin 191
notsubset 191
NSOffset 107
num 181
number sign (#) 55
numbering
chapters in a book 140
chapters in a document 90
footnotes in a document 91
pages in a book 140
pages in a document 90, 99

paragraphs in a book 141

paragraphs in a table 69
table footnotes in a document 92
volumes in a book 139
volumes in a document 89
numbers in equations 181
NumCounter 98
Numeral 205
NumPages 142
NumPoints
in Polygon 116
in PolyLine 116

NumSegments 102

(0]
Object
defined 101
ObjectAttribute 103
objects 101-119
color for 103
dashed pattern 102
examples of 217-222
fill for 103
generic object data 101
imported 110-115
object attributes 103
pen for 103
rotation 102
ObTint 102
oint 192
OKWord 99
OLE object 112
OneLinePerRec 134, 243
operators in equations 186-196
oplus 191
oppartial 193
optional operands in equations 193
optotal 193
Others 205
otimes 191

output filters 48

over 190
overline 188

Overprint 102

P
Page 99
page layouts 31-36
default 32
double-sided 35
first master page 35
headers and footers 35
single-sided 33
text column 32
page numbering
in a book 140
in a document 84, 90
page size 84, 89
PageAngle 100
PageBackground 100
PageNum 99
PageNumbering 141
PageNumStart 140
PageNumStyle 140
PageOrientation 247
pages
adding 99
background for 100
body 99
breaking 60
hidden 99
master 99
name 99
numbering in a document 99
orientation 247
reference 99
rotation 100
table placement on 69
types of 99
PageSize 100
PageTag 99

297

PageType 99
Para
in Cell 75
in Notes 120
inTbl 73
in TextFlow 120
Paragraph Catalog 58-62
creating 18
paragraph format properties
alignment 59
alignment in cells 61
default font 60
keep with next paragraph 60

language used for spell-checking
and hyphenation 64

leading 59

letter spacing 60

numbering 60

space above/below 59

widow/orphan line control 60
paragraph formats

adding to Paragraph Catalog 18

creating 13

defaults in cells 71

inheriting properties 20
paragraphs

creating 12

syntax 121
ParaLine

in Para 121
parallel 191
ParenBeginWariChu 205
ParenEndWariChu 206
partial 188
PCX files

imported 111
PDFBookInfo 137
PDFDocInfo 96
Pen 103

in Frame 102

in objects 102

pen pattern

for objects 102

for ruling style 77

index 103
PenWidth 102
PeriodComma 205
perp 191
Pgf 58

in Para 121

in PgfCatalog 58

in TblFormat 69, 71
PgfAcrobatLevel 62
PgfAlignment 59, 156
PgfAutoNum 60, 159
PgfBlockSize 60, 159
PgfBotSeparator 61, 160
PgfBotSepAtIndent 61, 160
PgfBotSepOffset 61, 160
PgfCatalog 58-62
PgfCellAlignment 61, 161
PgfCellBMargin 161, 166
PgfCellBMarginChange 161
PgfCellBMarginFixed 62, 161
PgfCellLMargin 161, 166
PgfCellLMarginChange 161
PgfCellLMarginFixed 61, 161
PgfCellMargins 61
PgfCellRMargin 161, 166
PgfCellRMarginChange 161
PgfCellRMarginFixed 61, 161
PgfCellTMargin 161, 166
PgfCellTMarginChange 161
PgfCellTMarginFixed 61, 161
PgfCondFullPgf 121
PgfEndCond 121
PgfFIndent 59, 156, 166
PgfFIndentChange 156
PgfFIndentOffset 59
PgfFIndentRelative 59
PgfFont 63

298

PgfHyphenate 60, 159
PgfLanguage 61, 160
PgfLeading 59, 156, 166
PgfLeadingChange 156
PgfLetterSpace 60, 159
PgfLIndent 59, 156, 166
PgfLIndentRelative 156
PgfLineSpacing 59
PgfLineSpacingFixed 156
PgfLocked 62, 131
PgtMaxWordSpace 61, 159
PgfMinWordSpace 60, 159
PgfNextTag 59
PgfNumAtEnd 60, 159
PgfNumberFont 60, 159
PgfNumbering 141
PgfNumFormat 60, 159
PgfNumString 121
PgfNumTabs 59, 156
PgfOptWordSpace 60, 159
PgfPlacement 60, 159
PgfPlacementStyle 60, 159
PgfRIndent 59, 156, 166
PgfRIndentChange 156
PgfRunInDefaultPunct 60, 159
PgfSpAfter 59, 156, 166
PgfSpAfterChange 156
PgfSpBefore 59, 156, 166
PgfSpBeforeChange 156
PgfTag

in Para 121

in Pgf 58

in TblFormat 69, 71
PgfTopSeparator 61, 160
PgfTopSepAtIndent 61, 160
PgfTopSepOffset 61, 160
PgfUseNextTag 59
PgfWithNext 60, 159
PgfWithPrev 60, 159
PICT files

imported 111
pie chart example 221
plus 191
pm 188
Point

in Polygon 116

in PolyLine 116
Polygon 115
portrait pages 247
power 190
PrecedingSymbol 205

preferences, document 82-97

PrefixEnd 163
PrevElement 166

prod 192

prompt 181

prompt in equations 181

propto 191

publish and subscribe 128, 133, 243

Q
QuestionBang 205
quotation marks

Smart Quotes 84, 91

around strings 5

R

Radius 117

RangeEnd 148
RangeStart 148

real 188

reference frames 61
reference pages, adding 99
ReRotateAngle 102
right angle bracket (>) 5
Rightarrow 191
rightarrow 191
RomanChar 205

RomanSpace 205
rotation

of cells 75

of pages 100
Row 74

inTbl 73
row properties

conditional text 74

height 74

placement 74
RowHeight 74
RowMaxHeight 74
RowMinHeight 74
RowPlacement 74
RowWithNext 74
RowWithPrev 74
rparen 188
Rubi text 212
RubiCompositeBegin 214
RubiCompositeEnd 214
RubiTextBegin 214
RubiTextEnd 214
rulers, displaying 86, 93
Ruling

in RulingCatalog 77
ruling style

cell 75

properties 77

in table formats 69
RulingCatalog 77
RulingColor 77
RulingGap 77
RulingLines 77
RulingPen 77
RulingPenWidth 77
RulingSeparation 77, 244
RulingTag 77
RunaroundGap 102
RunaroundType 102

S
sample files 9
ScaleFactor 106

ScaleHead 106
sec 188
sech 188
semicolon 188
Separation 102, 244
in Frame 102
in objects 102
Series 98
sgn 188
ShapeRect
in Ellipse 107

in Frame 107

in ImportObject 110, 111

in Math 177
in Rectangle 117
in RoundRect 117

in TextRect 118
side heads

changes in specification 243

specification in text frame 119

sim 192
sin 188
sinh 188
Smart Quotes 84, 91
Smart Spaces 84, 91
Smoothed
in Polygon 116
in PolyLine 116
in Rectangle 117
sn 190
spanning columns/rows 75
Sparel -5 206
SpclHyphenation 122
special characters 7
predefined 123

SpecialCase 161
spell-checking language

default for document 87, 94

in paragraphs and characters 64

sqrt 193

299

SqueezeHorizontal 206
SqueezeTable 206
SqueezeVertical 206
StartPageSide 139
statements
for book files 135-143
for document files 52-125
for equations 173-197
StopCountingAt 152
straddling columns/rows 75
straight quotation mark (') 5
String
in ParaLine 122, 126
in TextLine 118
string
in MathFullForm 182
strings 5
in equations 182
quotation marks around 5
syntax 5
structured documents 244
subscribe
graphics 112
subset 192
subseteq 192
substitution 194
SuccedingSymbol 205
SuffixBegin 163
sum 192
Sun rasterfile
imported 111
supset 192
supseteq 192
syntax

for strings 5

T
Table Catalog 29, 68-76
table format properties 68-76

alignment 69

autonumber of paragraphs in
cells 69

body cell paragraph formats 71
cell margins 69
color 70
column widths 70
fill pattern 70
footing cell paragraph formats 71
footnotes 85, 91
heading cell paragraph formats 71
indents 68
numbering paragraphs in cells 69
placement on page 69
ruling, default 69
shading, default 70
shading, exception column 70
space above/below 68
title paragraph format 69
title placement 69
widow/orphan control 69
tables 68-76
anchors 25
column widths 73
creating and formatting 23-31
example of 224
IDs 26
instances 23
number of columns 73
rotated cells 26
straddled cells 27
titles 73
TabStop 59, 156, 157
Tag 103, 107
TailCap
in Arc 105
in PolyLine 116

tan 188
tanh 189
Tbl

in Tbls 72

TblAlignment 69
TblAltShadePeriod 70
TblBlockSize 69
TblBody 73
TbIBodyFill 70
TblBodyRowRuling 69
TblBodySeparation 70, 244
TblBRuling 70
TblCatalog 68
TblCellMargins 69
TblColumn 70
TblColumnBody 71
TblColumnF 71
TblColumnH 71
TblColumnNum

in determining table width 76

inTbl 73

in TblFormat 70
TblColumnRuling 69
TblColumnWidth

in determining table width 76

inTbl 73

in TblFormat 70
TblColumnWidthA

in determining table width 76
TblColumnWidthP

in determining table width 76

in TblFormat 70
TbIF 73
TblFormat

inTbl 73

in TblCatalog 68
TblH 73
TbIHFFill 70
TbIHFRowRuling 69
TblHFSeparation 70, 244
TblID 72
TblInitNumBodyRows 71
TblInitNumColumns 71
TblInitNumFRows 71

300

TblInitNumHRows 71
TblLastBRuling 70
TblLIndent 68
TblLocked 71, 131
TbILRuling 70
TbINumByColumn 69
TbINumColumns 73
TblPlacement 69
TbIRIndent 68
TbIRRuling 70
TbIRulingPeriod 69
Tbls 72
TblSeparatorRuling 69
TblShadeByColumn 70
TblShadePeriod 70
TblSpAfter 68
TblSpBefore 68
TblTag

inTbl 72

in TblFormat 68
TblTitle 73
TblTitleContent 73
TbiTitleGap 69
ThITitlePgfl 69
TblTitlePlacement 69
TbITRuling 70
TblWidth 70
TbIXColumnNum 69
TbIXColumnRuling 69
TbIXFill 70
TbIXRowRuling 69
TblXSeparation 70, 244
templates, including in MIF 43
tensor 195
text columns

default number per page 84, 89

number in a text frame 33
text example 216
text flows 119-125

defined 31

imported by reference 128, 131
text frames

defined 31

placement of side heads 119

specifying number of columns 33

text imported by reference 127
text insets 127-130

defined 127

record of filter used 128
TextFlow 119-125, 162
TextInset 127
TextInsetEnd 128
TextRect in Page 100
TextRectID 122
TFAutoConnect 119
TFFeather 119
TFLineSpacing 119
TFMaxInterLine 120
TFMaxInterPgf 120
TFMinHangHeight 120
TFPostScript 119
TFSideheadGap 242
TFSideheadPlacement 242
TFSideheads 120
TFSideheadWidth 242
TESynchronized 119
TFTag 119
therefore 189
TiAPIClient 130
TiAutoUpdate 127
TiClientData 130
TiClientName 130
TiClientSource 130
TiClientType 130
TiEOLisEOP 132
TIFF files

imported 111
TiFlow 131
TiFlowName 131

TiFormatRemoveOverrides 131

TiFormatRemovePageBreaks 131
TiFormatting 131
TilmportHint 127
TiLastUpdate 126, 127
TiMacEditionld 127
TiMainFlow 131

times 192

TiName 127

TiPageSpace 131
TipAngle 106

TiSrcFile 127
TiTblHeadersEmpty 132
TiTblIsByRow 132
TiTbINumCols 132
TiTbINumHdrRows 132
TiTbINumSep 132
TiTblSep 132

TiTblTag 132

TiText 132

TiTextTable 132
TiTxtEncoding 132
TiTxtTblEncoding 133
TLAlignment 118
TLOrigin 117

top-level statements, about 5
TrapWise application 87, 94, 239
TRColumnBalance 118
TRColumnGap 118
TRNext 118
TRNumColumns 118
TRSideheadGap 118
TRSideheadPlacement 118
TRSideheadWidth 118
TSDecimalChar 59, 156
TSLeaderStr 59, 156
TSType 59, 156

TSX 59, 156, 166
TSXRelative 156

two-sided layout for documents 84,

91

301

U
ucomma 189
uequal 189
unary operators in equations 186
Unconditional 58, 122
Unique 102

in ElementBegin 161
Units 54
units, default 54
units, font size 54
UnitSymbol 205
upbrace 189
UserString 162

v

Value 96, 103, 137

var 189

Variable 122
VariableDef 80
VariableFormat 80
VariableFormats 80
VariableLocked 122, 131
VariableName 80, 122
variables

creating 38

vector graphics

imported 111
vee 192
Verbose 54
View 80

View Only documents, setting
options 45

view options settings 86, 93
ViewCutout 80
Viewlnvisible 80
ViewNumber 80
Views 79
volume numbering

in abook 139

VolumeNumComputeMethod 90,
140

VolumeNumStart 89, 139
VolumeNumStyle 89, 139
VolumeNumText 89, 139

w
wedge 192
widow/orphan
lines in a paragraph 60
lines in a table 69
window placement

document window 83, 89

302

WMEF files
imported 111

WPG files
imported 111

X
XRef 122, 125
XRefDef

in BookXRef 142

in XRefFormats 81
XRefEnd 126
XRefFormat 81
XRefFormats 81
XRefLocked 126, 131
XRefName 81, 126
XRefSrcFile

in BookXRef 142

in Paraline 126
XRefSrcIsElem 126, 142
XRefSrcText

in BookXRef 142

in ParaLine 126
xwd files

imported 111

	Introduction
	Why use MIF?
	Using this manual
	Style conventions
	Overview of MIF statements
	How MIF statements represent documents
	FrameMaker documents have default objects
	Current state and inheritance
	How FrameMaker identifies MIF files

	MIF statement syntax
	Statement hierarchy
	MIF data items
	Unit values
	Character set in strings
	Device-independent pathnames

	Using MIF Statements
	Working with MIF files
	Opening and saving MIF files
	Importing MIF files
	Editing MIF files
	MIF file layout

	Creating a simple MIF file for FrameMaker
	Creating and applying paragraph formats
	Creating a paragraph
	Creating a paragraph format
	Adding a Paragraph Catalog
	Applying a paragraph format
	How paragraphs inherit properties
	Tips

	Creating and applying character formats
	Creating and formatting tables
	Creating a table instance
	Adding a table anchor
	Creating a table format
	Adding a Table Catalog
	Applying a table format
	Creating default paragraph formats for new tables
	Tables inherit properties differently
	Tips

	Specifying page layout
	Using the default layout
	Creating a simple page layout
	Creating a single-sided custom layout
	Creating a double-sided custom layout
	Creating a first master page
	Adding headers and footers

	Creating markers
	Creating cross-references
	Creating cross-reference formats
	Inserting the reference source marker
	Inserting the reference point
	How FrameMaker writes cross-references

	Creating variables
	Defining user variables
	Using system variables
	Inserting variables

	Creating conditional text
	Creating and applying condition tags
	Showing and hiding conditional text
	How FrameMaker writes a conditional document

	Including template files
	Creating the template
	Editing the MIF file

	Setting View Only document options
	Changing the document window
	Using active cross-references
	Disabling commands

	Applications of MIF
	Sharing files with earlier versions
	Modifying documents
	Writing filters
	Database publishing

	Debugging MIF files
	Other application tools
	Where to go from here

	MIF Document Statements
	MIF file layout
	MIFFile statement
	Control statements
	Units statement
	CharUnits statement
	Verbose statement
	Comment statement

	Macro statements
	define statement
	include statement

	Conditional text
	ConditionCatalog statement
	Condition statement
	Conditional and Unconditional statements

	Paragraph formats
	PgfCatalog statement
	Pgf statement

	Character formats
	FontCatalog statement
	PgfFont and Font statements

	Tables
	TblCatalog statement
	TblFormat statement
	Tbls statement
	Tbl statement
	Row statement
	Cell statement
	RulingCatalog statement
	Ruling statement

	Color
	ColorCatalog statement
	Color statement
	Views statement
	View statement

	Variables
	VariableFormats and VariableFormat statements

	Cross-references
	XRefFormats and XRefFormat statements

	Global document properties
	Document statement
	BookComponent statement
	InitialAutoNums statement
	Dictionary statement

	Pages
	Page statement

	Graphic objects and graphic frames
	Object positioning
	Generic object statements
	AFrames statement
	Arc statement
	ArrowStyle statement
	Ellipse statement
	Frame statement
	Group statement
	ImportObject statement
	Math statement
	Polygon statement
	PolyLine statement
	Rectangle statement
	RoundRect statement
	TextLine statement
	TextRect statement

	Text flows
	TextFlow statement
	Notes statement
	Para statement
	ParaLine statement
	Char statement
	MarkerTypeCatalog statement
	Marker statement
	XRef statement

	Text insets (text imported by reference)
	TextInset statement
	TiApiClient statement
	TiFlow statement
	TiText statement
	TiTextTable statement

	Publishers
	DataLink Statement

	MIF Book File Statements
	MIF book file overview
	MIF book file identification line
	Book statements
	BWindowRect statement
	PDF statements
	XML book statements
	View only book statements
	BDisplayText statement
	BookComponent statement
	BookXRef statement
	BookUpdateReferences statement

	MIF Statements for Structured Documents and Books
	Structural element definitions
	ElementDefCatalog statement
	ElementDef statement

	Attribute definitions
	EDAttrDef statement

	Format rules
	EDTextFormatRules statement
	EDObjectFormatRules statement
	EDPrefixRules statement
	EDSuffixRules statement
	EDStartElementRules statement
	EDEndElementRules statement
	ContextFormatRule statement
	LevelFormatRule statement
	If, ElseIf, and Else statements

	Format change lists
	FmtChangeListCatalog statement
	FmtChangeList statement

	Elements
	ElementBegin and ElementEnd statements
	PrefixEnd and SuffixBegin statements

	XML data for structured documents
	Document and book statements

	Preference settings for structured documents
	Document statement

	Text in structured documents
	TextLine statement
	ParaLine statement

	Structured book statements
	ElementDefCatalog statement
	BookSettings statement
	BookElements statement

	MIF Messages

	MIF Equation Statements
	Document statement
	DMathCatalog statement

	Math statement
	MathFullForm statement
	A sample MathFullForm statement
	MathFullForm statement syntax
	Atomic expressions
	Operator expressions
	Sample equations

	MIF Asian Text Processing Statements
	Asian Character Encoding
	MIFEncoding statement for Japanese
	MIFEncoding statement for Chinese
	MIFEncoding statement for Korean

	Combined Fonts
	CombinedFontCatalog statement
	PgfFont or Font statement

	Kumihan Tables
	Understanding Kumihan tables
	Writing Kumihan tables as MIF
	Specifying Kumihan tables in MIF
	KumihanCatalog statement
	Kumihan statement
	CharClass statement
	SqueezeTable statement
	SpreadTable statement
	LineBreakTable statement
	ExtraSpaceTable statement

	Rubi text
	Document statement

	Examples
	Text example
	Bar chart example
	Pie chart example
	Custom dashed lines
	Table examples
	Creating an entire table
	Updating several values in a table

	Database publishing
	Creating several tables
	Creating anchored frames

	MIF Messages
	General form for MIF messages
	List of MIF messages

	MIF Compatibility
	Changes between version 6.0 and 7.0
	Changes to structured PDF
	General XML support
	XML Namespaces
	XMP job control packets

	Changes between version 5.5 and 6.0
	Saving documents and books as PDF
	Books
	Book Components
	Documents

	Changes between version 5 and 5.5
	Asian text processing
	MIF file layout
	Control statements
	Document statements
	Color statements
	Paragraph and Character statements
	Text inset statements
	Marker statements
	Graphic object statements
	Structured element definition statements

	Changes between versions 4 and 5
	Changes to existing MIF statements

	Changes between versions 3 and 4
	4.00 top-level MIF statements
	Changes to 3.00 MIF statements

	Facet Formats for Graphics
	Facets for imported graphics
	Basic facet format
	Facet name
	Data type
	Facet data

	Graphic insets (UNIX versions)
	External graphic insets
	Internal graphic insets
	Application-specific facets
	Example of graphic inset file

	General rules for reading and writing facets

	EPSI Facet Format
	Specification of an EPSI facet
	Example of an EPSI facet

	FrameImage Facet Format
	Specification of a FrameImage facet
	Specification of FrameImage data
	Header
	Color map
	Data describing the graphic

	Differences between monochrome and color
	Sample unencoded FrameImage facet
	Sample encoded FrameImage facet

	FrameVector Facet Format
	Specification of a FrameVector facet
	Specification of FrameVector data
	Types and listing of op codes
	Data types used in specifications
	Specifications of definition op codes
	Specifications of style op codes
	Specifications of object op codes

	Sample FrameVector facet
	Definition op codes for the FrameVector graphic
	Specification of the rectangle shadow
	Specification of the polygon
	Specification of the rectangle
	Specification of the text line
	Specification of the polyline
	Specification of the arc
	Specification of the end of the FrameVector graphic

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

